Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
Từ dãy tỉ số bằng nhau bài cho ta có
\(\frac{20x-15y}{25}=\frac{15y-12z}{9}=\frac{12z-20x}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{20x-15y}{25}=\frac{15y-12z}{9}=\frac{12z-20x}{16}=\frac{20x-15y+15y-12z+12z-20x}{25+9+16}=0\)
\(\Rightarrow4x-3y=5y-4z=3z-5x=0\)
....
Từ \(\frac{4x-3y}{5}\)=\(\frac{5y-4z}{3}\)=\(\frac{3z-5x}{4}\)⇒\(\frac{20x-15y}{25}\)=\(\frac{15y-12z}{9}\)=\(\frac{12z-20x}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{20x-5y}{25}\)=\(\frac{15y-12z}{9}\)\(\frac{12z-20x}{16}\)=\(\frac{20x-5y+15y-12z+12z-20x}{25+9+16}\)=\(\frac{0}{50}\)=0
+)4x-3y=0⇒4x=3y⇒\(\frac{x}{3}\)=\(\frac{y}{4}\)
+)5y-4z=0⇒5y=4z⇒\(\frac{y}{4}\)=\(\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)=\(\frac{x-y+z}{3-4+5}=\frac{2020}{4}=505\)
+)\(\frac{x}{3}=505\)⇒x=1515
+)\(\frac{y}{4}=505\)⇒y=2020
+)\(\frac{z}{5}=505\)⇒z=2525
Vậy....
\(\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}=\dfrac{3z-5x}{4}\)
=>\(\left\{{}\begin{matrix}\dfrac{4x-3y}{5}=\dfrac{5y-4z}{3}\\\dfrac{4x-3y}{5}=\dfrac{3z-5x}{4}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\left(4x-3y\right)=5\left(5y-4z\right)\\4\left(4x-3y\right)=5\left(3z-5x\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-9y-25y+20z=0\\16x-12y-15z+25x=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\end{matrix}\right.\)
mà x-y+z=200 nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}12x-34y+20z=0\\41x-12y-15z=0\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}36x-102y+60z=0\\164x-48y-60z=0\\60x-60y+60z=12000\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}200x-150y=0\\-24x-42y=-12000\\x-y+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4x-3y=0\\4x+7y=2000\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-10y=-2000\\4x-3y=0\\x-y+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=200\\4x=3y\\x-y+z=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=200\\x=\dfrac{3}{4}y=150\\150-200+z=200\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=200\\x=150\\z=250\end{matrix}\right.\)
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
\(\dfrac{4x-3y}{2016}=\dfrac{4\cdot3k-3\cdot4k}{2016}=0\)
\(\dfrac{5y-4z}{2017}=\dfrac{5\cdot4k-4\cdot5k}{2017}=0\)
\(\dfrac{3z-5x}{2018}=\dfrac{3\cdot5k-5\cdot3k}{2018}=0\)
=>\(\dfrac{4x-3y}{2016}=\dfrac{5y-4z}{2017}=\dfrac{3z-5x}{2018}\)
Sai đề rồi bạn, sao \(3z-5x4\) ? Khánh Linh Lê