Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2y\right)^2-\left(x-2y\right)^2\\ =\left[\left(x+2y\right)-\left(x-2y\right)\right]\left[\left(x+2y\right)+\left(x-2y\right)\right]\\ =\left(x+2y-x+2y\right)\left(x+2y+x-2y\right)\\ =4y.\left(2x\right)\\ =8xy\)
\(\left(3x+y\right)^2+\left(x-y\right)^2\\ =\left[\left(3x\right)^2+2.3x.y+y^2\right]+\left(x^2-2xy+y^2\right)\\ =6x^2+6xy+y^2+x^2-2xy-y^2\\ =7x^2+4xy\)
\(-\left(x+5\right)^2-\left(x-3\right)^2\\ =-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\\ =-x^2-10x-25-x^2+6x-9\\ =-2x^2-4x-34\)
\(\left(3x-2\right)^2-\left(3x-1\right)^2\\ =\left[\left(3x-2\right)-\left(3x-1\right)\right]\left[\left(3x-2\right)+\left(3x-1\right)\right]\\ =\left(3x-2-3x+1\right)\left(3x-2+3x-1\right)\\ =-1.\left(6x-3\right)\\ =-6x+3\)
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
a: \(N=\dfrac{3x^5-4x^4+6x^3}{-2x^2}=-\dfrac{3}{2}x^3+2x^2-3x\)
b: \(N=\dfrac{\left(6x^4y^5-3x^3y^4+\dfrac{1}{2}x^4y^3z\right)}{-\dfrac{1}{3}x^2y^3}=-18x^2y^2+9xy-\dfrac{3}{2}x^2z\)
c: \(\Leftrightarrow N\cdot\left(y-x\right)=\left(x-y\right)^3\)
\(\Leftrightarrow N=\dfrac{\left(x-y\right)^3}{y-x}=-\left(y-x\right)^2\)
d: \(\Leftrightarrow N\cdot\left(y^2-x^2\right)=\left(y^2-x^2\right)^2\)
hay \(N=y^2-x^2\)