Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Leftrightarrow\frac{12x-8y}{4^2}=\frac{6z-12x}{3^2}=\frac{8y-6z}{2^2}=\frac{12x-8y+6z-12x+8y-6z}{4^2+3^2+2^2}=0\)(tính chất dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\2z=4x\\4y=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{cases}}}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(\text{đpcm}\right)\)
Ta có \(42=3\left|y-3\right|+4\left(2012-x\right)^4\).
Do 42 chia hết cho 3 và 3|y -3| chia hết cho 3 nên \(4\left(2012-x\right)^4\) chia hết cho 3 \(\Rightarrow\left(2012-x\right)^4⋮3\) .
Do 3 là số nguyên tố nên \(2012-x⋮3\) . Đặt \(2012-x=3k\left(k\in Z\right)\).
Ta có \(42=3\left|y-3\right|+4\left(3k\right)^4=3\left|y-3\right|+324k^4\).
Nếu k = 0 hay 2012 - x = 0 \(\Leftrightarrow x=2012\), khi đó:
\(42=3\left|y-3\right|\)\(\Leftrightarrow\left|y-3\right|=14\) \(\Leftrightarrow\left[{}\begin{matrix}y=17\\y=-11\end{matrix}\right.\).
Nếu \(k\ne0\) khi đó \(3\left|y-3\right|+324k^4\ge324>42\) (vô lý).
Vây phương trình có hai cặp nghiệm \(\left(3;17\right),\left(3;-11\right)\).