Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow x^2-2xy+y^2=35xy-5x^2y^2-60\)
\(\Leftrightarrow\left(x-y\right)^2=5\left(3-xy\right)\left(xy-4\right)\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\) nên \(5\left(3-xy\right)\left(xy-4\right)\ge0\Leftrightarrow3\le xy\le4\)
\(\Rightarrow\hept{\begin{cases}x;y\in\left\{3;4\right\}\\x=y\end{cases}}\) \(\Rightarrow\left(x;y\right)\in\left\{\left(2;2\right);\left(-2;-2\right)\right\}\)
Ta có
PT <=> (1 + 5y2)x2 - 37yx + y2 + 60 = 0
Xét pt theo ẩn x ta có để pt có nghiệm thì
∆\(\ge0\)
<=> (37y)2 - 4(1 + 5y2)(y2 + 60) \(\ge0\)
<=> - 20y4 + 165y2 - 240\(\ge0\)
<=> 1 < y2 < 7
=> y2 = 4
=> y = (2;-2)
=> x = (2;-2)
Vì x+1/y và y+1/x đều thuộc Z <=> (x+1/y).(y+1/y) thuộc Z
<=> xy+1/xy+2 thuộc Z => xy+1/xy thuộc Z
<=> (xy+1/xy)^2 thuộc N
<=> x^2.y^2 + 1/x^2.y^2 + 2 thuộc Z
<=> x^2.y^2 + 1/x^2.y^2 thuộc Z
=> ĐPCM
k mk nha bạn
Câu 2:
Từ điều kiện bài này có thể đặt ẩn phụ và AM-GM ra luôn kết quả, nhưng hơi rắc rối khi người ta hỏi từ đâu mà có cách đặt ẩn phụ như vậy, do đó ta giải trâu :D
\(x^2+y^2+z^2+xyz=4\)
\(\Leftrightarrow\frac{x^2}{4}+\frac{y^2}{4}+\frac{z^2}{4}+2\left(\frac{x}{2}.\frac{y}{z}.\frac{z}{2}\right)=1\)
\(\Leftrightarrow\frac{xy}{2z}.\frac{xz}{2y}+\frac{xy}{2z}.\frac{yz}{2x}+\frac{yz}{2x}.\frac{xz}{2y}+2\left(\frac{xy}{2z}.\frac{yz}{2x}.\frac{xy}{2y}\right)=1\)
Đặt \(\left(\frac{xy}{2z};\frac{zx}{2y};\frac{yz}{2x}\right)=\left(m;n;p\right)\Rightarrow mn+np+pn+2mnp=1\)
\(\Leftrightarrow2\left(n+1\right)\left(m+1\right)\left(p+1\right)=\left(n+1\right)\left(m+1\right)+\left(n+1\right)\left(p+1\right)+\left(m+1\right)\left(p+1\right)\)
\(\Leftrightarrow\frac{1}{n+1}+\frac{1}{m+1}+\frac{1}{p+1}=2\)
\(\Leftrightarrow1=\frac{n}{n+1}+\frac{m}{m+1}+\frac{p}{p+1}\ge\frac{\left(\sqrt{n}+\sqrt{m}+\sqrt{p}\right)^2}{m+n+p+3}\)
\(\Leftrightarrow m+m+p+2\left(\sqrt{mn}+\sqrt{np}+\sqrt{mp}\right)\le m+n+p+3\)
\(\Leftrightarrow\sqrt{mn}+\sqrt{np}+\sqrt{mp}\le\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\le\frac{3}{2}\Leftrightarrow x+y+z\le3\)
Câu 1:
\(2xyz=1-\left(x+y+z\right)+xy+yz+zx\)
\(\Rightarrow xy+yz+zx=2xyz+\left(x+y+z\right)-1\)
\(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\)
\(=\left(x+y+z\right)^2-2\left(x+y+z\right)-4xyz+2\)
\(VT\ge\left(x+y+z\right)^2-2\left(x+y+z\right)-\frac{4}{27}\left(x+y+z\right)^3+2\)
\(VT\ge\frac{4}{27}\left[\frac{15}{4}-\left(x+y+z\right)\right]\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{2}\ge\frac{3}{2}\)
(Do \(0< x;y;z< 1\Rightarrow x+y+z< 3< \frac{15}{4}\))
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Áp dụng bdt cosi-schwar cho 3 số (\(\left(am+bn+cp\right)^2\le\left(a^2+b^2+c^2\right)\)\(\left(m^2+n^2+p^2\right)\)
với a=x,b=y\(\sqrt{2}\);c=z\(\sqrt{5}\); m=\(\sqrt{11-2y^2},n=\sqrt{3-5z^2}\),\(p=\sqrt{2-x^2}\)
82\(\le\left(x^2+2y^2+5z^2\right)\left(11-2y^2+3-5z^2+1-x^2\right)\) <=>64\(\le P\left(16-P\right)\)
<=>P2-16P+64\(\le0< =>\left(P-8\right)^2\le0\) <=>P=8
\(37xy=x^2+y^2+5x^2y^2+60\ge2xy+5x^2y^2+60\)
\(\Rightarrow5x^2y^2-35xy+60\le0\)
\(\Rightarrow5\left(xy-3\right)\left(xy-4\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}xy=3\\xy=4\end{matrix}\right.\)
Thế vào pt đầu \(\Rightarrow...\)
\(5\left(xy-3\right)\left(xy-4\right)\le0\) sao suy ra \(\left[{}\begin{matrix}xy=3\\xy=4\end{matrix}\right.\) đc