\(x,y\in Z\) thỏa mãn \(x^2+5y^2-4xy-4y+3=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

\(x^2+5y^2-4xy-4y+3=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-4y+4\right)=1\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-2\right)^2=1\)

\(x;y\in Z\)\(\Rightarrow\left(x-2y\right)^2\ge0;\left(y-2\right)^2\ge0\)\(\left(x-2y\right)^2;\left(y-2\right)^2\in N\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(y-2\right)^2=1\end{matrix}\right.\\\left\{{}\begin{matrix}\left(x-2y\right)^2=1\\\left(y-2\right)^2=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

Y
14 tháng 4 2019

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-4y+4\right)-1=0\)

\(\Leftrightarrow\left(x-2y\right)^2+\left(y-2\right)^2=1=0^2+1^2\)

\(x,y\in Z\) nên ta có các trường hợp sau:

+ TH1 : \(\left\{{}\begin{matrix}x-2y=0\\y-2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\left(TM\right)\)

+ TH2 : \(\left\{{}\begin{matrix}x-2y=0\\y-2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\left(TM\right)\)

+ TH3 : \(\left\{{}\begin{matrix}x-2y=1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\) (TM )

+ TH4 : \(\left\{{}\begin{matrix}x-2y=-1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\left(TM\right)\)

Vậy có 4 cặp số (x,y) thỏa mãn yêu cầu bài toán là

( 6 ; 3 ) ; ( 2 ; 1 ) ; ( 5 ; 2 ) ; ( 3 ; 2 ).

5 tháng 8 2017

Điểm rơi: x=4;y=2;z=4 

\(A=x^2+4xy+4y^2+2z^2=\left(x-2y\right)^2+8xy+2z^2\)

Mà \(xyz=32\Leftrightarrow z^2=\frac{32^2}{x^2y^2}\)

\(VT=\left(x-2y\right)^2+8xy+\frac{2.32^2}{x^2y^2}\ge0+4xy+4xy+\frac{2.32^2}{x^2y^2}\)

Áp dụng AM-GM:

\(4xy+4xy+\frac{2048}{x^2y^2}\ge3\sqrt[3]{32768}=96\)

\(VT\ge96\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=2y\\xy=8\end{cases}}\)....

30 tháng 9 2017

\(x^2-4xy+5y^2=169\)

\(x^2-4xy+4y^2+y^2-169=0\)

\(\left(x^2-4xy+4y^2\right)+\left(y^2-13^2\right)=0\)

\(\left(x-2y\right)^2+\left(y-13\right)\left(y+13\right)=0\)

30 tháng 9 2017

b/    \(\Leftrightarrow x^2-4xy+4y^2+y^2=13^2\)

        \(\Leftrightarrow\left(x-2y\right)^2=\left(13^2-y^2\right)\)

        \(\Rightarrow y^2\le13^2\)và    \(13^2-y^2\)là số chính phương .  Do đó :

      \(y^2=0\)hay  \(y=0\)

     Thay vào ta có các nghiệm sau   \(\left(13,0\right);\left(-13;0\right)\)

  

12 tháng 5 2020

ta dễ chứng minh được \(x+y\ge\frac{2\sqrt{2}}{5}-\frac{2}{5}\)\(\Rightarrow\)\(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}>0\)

\(P=\frac{5\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\left(\frac{5}{2}\left(x+y-\left(\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)\right)\left(\frac{5}{2}\left(x+y\right)+\sqrt{2}+1\right)-\frac{9}{4}\left(x-y\right)^2\right)}{\frac{5}{2}\left(x+y\right)+\sqrt{2}+1}\)

\(+\left(\frac{\frac{45}{2}\left(x+y+\frac{2\sqrt{2}}{5}-\frac{2}{5}\right)}{5\left(x+y\right)+\sqrt{2}+1}+\frac{9}{2}\right)\left(x-y\right)^2+6-4\sqrt{2}\ge6-4\sqrt{2}\)

Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}-1}{5}\)

12 tháng 5 2020

Ta chứng minh: \(P\ge6-4\sqrt{2}+\left(2-\sqrt{2}\right)\left(4x^2+4y^2+17xy+5x+5y-11\right)\)

Hay là:

\(\frac{\left(9+4\sqrt{2}\right)\left(98x-298y-130+225\sqrt{2}y+85\sqrt{2}\right)^2}{9604}+\frac{18\left(2\sqrt{2}-1\right)\left(-5y-1+\sqrt{2}\right)^2}{36+16\sqrt{2}}\ge0\)

Việc còn lại là của mọi người.

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

14 tháng 4 2019

\(\Leftrightarrow\left(x-2y\right)^2+\left(x+1\right)^2=2017\)

Giờ biến đổi 2017 thành tổng 2 bình phương của số tự nhiên là ra x,y.

4 tháng 8 2019

Ta có: \(x^2+4y^2+x=4xy+2y+2\)

        \(\Rightarrow x^2-4xy+4y^2+x-2y=2\)

      \(\Rightarrow\left(x-2y\right)^2+\left(x-2y\right)=2\)

      \(\Rightarrow\left(x-2y\right)\left(x-2y+1\right)=2\) 

Tìm các TH

Mặt khác : \(4x^2+4xy+y^2=2x+y+56\) 

                \(\Rightarrow\left(2x+y\right)^2-\left(2x+y\right)=56\)

               \(\Rightarrow\left(2x+y\right)\left(2x+y-1\right)=56\)

Tìm các TH