Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2(x + 2) + 4(x + 2) = 0
(x^2 + 4)(x + 2) =0
=> x^2 + 4 = 0 hoặc x + 2 = 0
Ta có : x^2 >= 0 => x^2 + 4 >= 4 mà x^2 + 4 = 0 => Vô lí
Vậy x + 2 = 0 => x = -2
Vậy x = -2
Bạn kia giải hơi khó nhìn nên t giải lại.
\(x^2\left(x+2\right)+4\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x^2+4=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2\ge0\Rightarrow x^2+4\ge4\\x=-2\end{cases}}\)
Xét trường hợp \(x^2\ge0\Rightarrow x^2+4\ge4\)
Mà \(x^2+4=0\)(vô lý)
Suy ra phương trình có nghiệm là (-2)
\(\Leftrightarrow8\left(x-2009\right)^2⋮8;8\left(x-2009\right)^2\le25;x\in N\)
Tự giải tiếp nhé
a: =>|x-2009|=2009-x
=>x-2009<=0
=>x<=2009
b: =>2x-1=0 và y-2/5=0 và x+y-z=0
=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10
Do \(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\)
\(\Leftrightarrow y^2\le25\).Mà \(y\inℕ\) nên \(0\le y^2\le25\Leftrightarrow0\le y\le5\)
Mà \(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\)
\(\Rightarrow y\in\left\{1;3;5\right\}\)
Thay vào tìm x. :) Nhớ đk: \(x,y\inℕ\)
Ta có: \(25-y^2=8.\left(x-2009\right)^2\)
\(\Rightarrow8.\left(x-2009\right)^2+y^2=25\left(1\right)\)
Vì \(y^2\ge0\)nên \(\left(x-2009\right)^2\le\frac{25}{8}\)
\(\Rightarrow\left(x-2009\right)^2=0\)hoặc \(\left(x-2009\right)^2=1\)
Với \(\left(x-2009\right)^2=1\)thay vào \(\left(1\right)\), ta có:
\(8.1+y^2=25\)
\(\Rightarrow8+y^2=25\)
\(\Rightarrow y^2=17\)( loại )
Với \(\left(x-2009\right)^2=0\)thay vào \(\left(1\right)\), ta có:
\(8.0+y^2=25\)
\(\Rightarrow0+y^2=25\)
\(\Rightarrow y^2=25\)
\(\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Mà \(y\in N\)
\(\Rightarrow y=5,x=2009\)
Vậy \(x=2009,y=5\)
Ta có: \(\left(x-2009\right)^2\ge0\)nên \(8\left(x-2009\right)^2\ge0\)
VP \(\ge0\)nên \(25-y^2\ge0\Leftrightarrow y^2\le25\)(1)
Mặt khác, do \(\left[8\left(x-2009\right)^2\right]⋮2\)nên \(\left(25-y^2\right)⋮2\)
\(\Leftrightarrow y^2\)lẻ \(\Leftrightarrow y\)lẻ (2)
Kết hợp (1), (2) và \(y\inℕ\),ta được: \(y\in\left\{1;3;5\right\}\)(suy ra từ \(y^2\in\left\{1;9;25\right\}\))
*Với y = 1 thì \(25-1^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\)(loại)
*Với y = 3 thì \(25-3^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\)(loại)
*Với y = 5 thì \(25-5^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\)\(\Leftrightarrow x=2009\)
Vậy x = 5 và y = 2009.