Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}xy=2\\yz=3\\zx=54\end{cases}}\Rightarrow xy.yz.zx=2.3.54\)
\(\Rightarrow\left(xyz\right)^2=18^2\)\(\Rightarrow xyz=\pm18\)
Thế vào mà tìm x,y,z
Ta có : xy.yz.xz = 2.3.54
<=> ( xyz )2 = 324
=> ( xyz )2 = 182 = ( - 18 )2
TH1 : xyz = 18
=> z = xyz : xy = 18 : 2 = 9
=> 9y = 3 => y = 1/3
=> 1/3x = 2 => x = 6
TH2 : xyz = - 18
=> z = xyz : xy = - 18 : 2 = - 9
=> - 9y = 3 => y = - 1/3
=> - 1/3x = 2 => x = - 6
Vậy ( x;y;z ) = { ( 9;1/3;6 ); ( - 9;- 1/3 ; - 6 ) }
Đặt x/2 = y/3 = k ta có: x = 2k và y = 3k
=> x.y = 2k.3k = 54
> 6k² = 54 => k=-3 ; 3
=> x = 6; y = 9 hoặc x = -6; y = -9
Đặt\(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\frac{x}{2}.\frac{y}{3}=\frac{xy}{6}=\frac{54}{6}=9=k^2\Rightarrow k\in\left\{3;-3\right\}\)
Khi \(k=3\) thì:\(\frac{x}{2}=3\Rightarrow x=6;\frac{y}{3}=3\Rightarrow y=9\)
Khi \(k=-3\)thì: \(\frac{x}{2}=-3\Rightarrow x=-6;\frac{y}{3}=-3\Rightarrow y=-9\)
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
1.\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\hept{\begin{cases}\frac{x}{2}.\frac{y}{3}=\frac{54}{6}=9\\\frac{x}{2}.\frac{y}{3}=\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2\end{cases}\Rightarrow\left(\frac{x}{2}\right)^2}=\left(\frac{y}{3}\right)^2=9\Rightarrow\orbr{\begin{cases}\frac{x}{2}=\frac{y}{3}=3\\\frac{x}{2}=\frac{y}{3}=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=6;y=9\\x=-6;y=-9\end{cases}}}\)
2.\(x:y:z=3:8:5\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.8=16\\z=2.5=10\end{cases}}\)
=>/1/5-x/=1/5-1/5
=>/1/5-x/=0
=>1/5-x=0
=>x=1/5
2) đặt :x/2=y/3=k
ta có: x=2.k
y=3.k
=>x.y=2k.3k=k^2.6=54
=>k^2=54:6
=>k^2=9
=>k=3
=>x/2=3=>x=6
=>y/3=3=>y=9
a Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\left(2\right)\)
Từ (1);(2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> x = 2 x 10 = 20
y = 2 x 15 = 30
z = 2 x 21 = 42
b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
=> x = 2k ; y = 3k
=> xy = 6.k2
=> 54 = 6.k2
=> k2 = 54 : 6 = 9
=> k = 3 hoặc k = -3
=> x = 3 x 2=6 hoặc x =( -3) x 2 = -6
y = 3 x 3 = 9 hoặc y = (-3) x 3 = -9
\(\text{a,Ta có:}\)\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\) \(\text{và}\)\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
\(\text{Áp dụng tính chất DTSBN có}\)
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\text{Suy ra}:x=2.10=20;y=2.15=30;z=2.21=42\)
\(\text{Vậy }x=20;y=30;z=42\)
\(\text{b, Đặt }\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(\text{Theo đề, ta có}\)
\(xy=54\Rightarrow2k.3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k=3\text{hoặc }k=-3\)
\(\text{Suy ra: }x=2.3=6\text{hoặc}x=2.\left(-3\right)=-6\) \(y=3.3=9\text{ hoặc }y=-3.3=-9\)
\(\text{Vậy với k=3 }\Rightarrow x=6;y=9\)
\(\text{với k=-3\Rightarrow x=-6;y=-9}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\left(k\inℚ\right)\)
=>\(\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
ta có xy=54
(=) 2k.3k=54
(=) \(6.k^2\)=54
(=) \(k^2=9\)
=> k=3
=> \(\hept{\begin{cases}x=2.3\\y=3.3\end{cases}\left(=\right)\hept{\begin{cases}x=6\\y=9\end{cases}}}\)
Đặt : \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k;y=3k\)
Khi đó : \(2k.3k=54\)
\(\Rightarrow6k^2=54\)
\(\Rightarrow k^2=54:6=9=3^2\)
\(\Rightarrow k=3\)hoặc \(k=-3\)
\(\Rightarrow x=2.3=6\)\(;y=3.3=9\)hoặc
\(x=2.\left(-3\right)=-6\)\(;y=3.\left(-3\right)=-9\)