Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\left[\frac{x\left(x-y\right)}{y\left(x+y\right)}+\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\right]:\left[\frac{y^2}{x\left(x-y\right)\left(x+y\right)}+\frac{1}{x+y}\right]\frac{ }{ }\)
=\(\left[\frac{x^2\left(x-y\right)+y\left(x-y\right)\left(x+y\right)}{xy\left(x+y\right)}\right]:\left[\frac{y^2+x\left(x-y\right)}{x\left(x-y\right)\left(x+y\right)}\right]\)=\(\frac{\left(x-y\right)\left(x^2+y^2+xy\right)}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{y^2+x\left(x-y\right)}\)
=\(\frac{\left(x-y\right)^2\left(x^2+y^2+xy\right)}{y\left(x^2+y^2-xy\right)}\)=\(\frac{\left(x-y\right)^2\left(x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}{y\left(x^2-xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}\)=\(\frac{\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{y.\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}\)
Ta nhận thấy các số trong ngoặc đều dương.
=> Để A>0 thì y>0
Vậy để A>0 thì y>0 và với mọi x
1/
Ta có: \(x-y=xy\Rightarrow x=xy+y=y\left(x+1\right)\Rightarrow x:y=x+1\left(y\ne0\right)\)
Mà x - y = x:y
\(\Rightarrow x-y=x+1\Rightarrow-y=1\Rightarrow y=-1\)
Thay y = -1 vào x - y = xy ta được:
\(x-\left(-1\right)=x.\left(-1\right)\Rightarrow x+1=-x\Rightarrow2x=-1\Rightarrow x=\frac{-1}{2}\)
Vậy...
2/ tương tự bài 1 x = 1/2, y = -1
TA CÓ: \(B-\left(x^2+xy+y^2\right)=2x^2-xy+y^2\)
\(\Rightarrow B=\left(2x^2-xy+y^2\right)+\left(x^2+xy+y^2\right)\)
\(B=2x^2-xy+y^2+x^2+xy+y^2\)
\(B=\left(2x^2+x^2\right)+\left(y^2+y^2\right)+\left(xy-xy\right)\)
\(B=3x^2+2y^2\)
TA CÓ: \(\left(\frac{1}{2}.xy+x^2-\frac{1}{2}x^2y\right)-C=-xy+x^2y+1\)
\(\Rightarrow C=\left(\frac{1}{2}xy+x^2-\frac{1}{2}x^2y\right)-\left(-xy+x^2y+1\right)\)
\(C=\frac{1}{2}xy+x^2-\frac{1}{2}x^2y+xy-x^2y-1\)
\(C=\left(\frac{1}{2}xy+xy\right)+\left(\frac{-1}{2}x^2y-x^2y\right)+x^2-1\)
\(C=\frac{3}{2}xy+\frac{-3}{2}x^2y+x^2-1\)
mk nha
Ai làm được mih liền. mình sẽ vẫn on đợi mọi người hen.
a Ta có
xy -x-y=-1
=> x(y-1)-(y-1)=0
=> (y-1)(x-1)=0
=> + y-1 =0 và x-1 thỏa mãn với mọi số nguyên
+ x-1=0 và y-1 thỏa mãn với mọi số nguyên
1 , sai đề
2/ xy-x-y+1=0
x(y-1)-(y-1)=0
(y-1)(x-1)=0
->y-1=o hoặc x-1=0
y-1=0 y=1
x-1=0 x=1
vậy x=y=1
3,
a. đặt x/4=y/7=k => x=4k; y=7k
xy=112
=> 4k.7k=112
=> 28k2=112
=> k2=112:28
=> k2=4=22=(-2)2
=> k=2 hoặc k=-2
TH1: k=2
=> x=4k=4.2=8
=> y=7k=7.2=14
TH2: k=-2
=> x=4k=4.(-2)=-8
=> y=7k=7.(-2)=-14
b. x/y=2/5 => x/2=y/5=k => x=2k; y=5k
xy=40
=> 2k.5k=40
=> 10k2=40
=> k2=40:10
=> k2=4
=> k=2 hoặc k=-2
Th1: k=2
=> x=2k=2.2=4
=> y=5k=5.2=10
TH2: k=-2
=> x=2k=2.(-2)=-4
=> y=5k=5.(-2)=-10
a) Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k;y=7k\)
Ta có xy = 112
\(\Rightarrow\) 4k.7k = 112
\(\Rightarrow\) 28k2 = 112
\(\Rightarrow\) k2 = 4
\(\Rightarrow\) k = + 2
\(\Rightarrow\) x = 4.(+ 2) = + 8; y = 7.(+ 2) = + 14
b) \(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Làm tương tự như câu a
\(x+y+xy=2\)
\(\Leftrightarrow\left(x+xy\right)+\left(y+1\right)=3\)
\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=3\)
\(\Leftrightarrow\left(y+1\right)\left(x+1\right)=3\)
\(\Rightarrow\left(x+1,y+1\right)=\left(1,3;3,1-1,-3;-3,-1\right)\)
\(\Rightarrow\left(x,y\right)=\left(0,2;2,0;-2,-4;-4,-2\right)\)
x+y + xy = 2
=>