Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i love U không giải đâu ,đừng có ****,bạn ấy luôn đi xin **** người khác mà không thèm giải bài nào
Ta có B=\(2\left(x+y\right)\left(x^2-xy+y^2\right)+3x^2+3y^2+10xy\)
\(B=-8x^2+8xy-8y^2+3x^2+3y^2+10xy\)
\(-B=5x^2-18xy+5y^2>=\frac{5}{2}\left(x+y\right)^2-18\left(\frac{x+y}{2}\right)^2=40-72\)=-32
hay b>=32 dấu bằng xảy ra tự tính
\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)
b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-3x-3x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)
\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)
Hay \(P\ge10\) với mọi giá trị của \(x\in R\).
Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)
\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy.....
Chúc bạn học tốt!!!
x2.(x+3)+y2.(y+5)−(x+y).(x2−xy+y2)=0
<=>\(x^3+3x^2+y^3+5y^2-x^3-y^3=0\)(áp dụng hằng đẳng thức)
<=> \(3x^2+5y^2=0\)
ta thấy \(3x^2\ge0\)với mọi x
\(5y^2\ge0\) với mọi y
=> \(3x^2+5y^2\ge0\)
=> x=0 và y=0
vậy cặp số (x;y)=(0;0)
x2+y2-2x+4y+5=0
<=>x2-2x+1+y2+4y+4=0
<=>(x-1)2+(y+4)2=0
<=>x-1=0 và y+4=0
<=>x=1 và y=-4