Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(-\dfrac{3}{4}\right)^{3x-1}=\dfrac{256}{81}\)
\(\Leftrightarrow\left(-\dfrac{3}{4}\right)^{3x-1}=\left(-\dfrac{3}{4}\right)^{-4}\)
=>3x-1=-4
=>3x=-3
hay x=-1
b: \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=-1\\x-7=1\end{matrix}\right.\Leftrightarrow x\in\left\{7;6;8\right\}\)
c: \(\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{1}{2}\right)^2=0\)
=>x-1/2=0 và y+1/2=0
=>x=1/2 và y=-1/2
a) Ta có :
\(\frac{x}{11}=\frac{y}{7}\Leftrightarrow7x-11y=0\)
Ta có hệ : \(\hept{\begin{cases}7x-11y=0\\x+y=-54\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}7x-11y=0\\7x+7y=-378\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-18y=378\\7x+7y=-378\end{cases}\Leftrightarrow\hept{\begin{cases}y=-21\\x=-33\end{cases}}}\)
b, Ta có : \(\frac{x}{5}=\frac{y}{2}\Leftrightarrow2x=5y\)\(\Leftrightarrow x=\frac{5y}{2}\). Thay vào biểu thức x . y = 90 . Ta được :
\(\frac{5y}{2}\cdot y=90\Leftrightarrow\frac{5y^2}{2}=90\Leftrightarrow5y^2=180\Leftrightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)
Với y = 6 => x = \(\frac{5\cdot6}{2}=15\)
Với y = -6 => x = \(\frac{5\cdot\left(-6\right)}{2}=-15\)
( x - 2 )2012 + | y2 - 9 |2014 = 0 ( 1 )
vì ( x - 2 )2012 \(\ge\)0 ; | y2 - 9 |2014 \(\ge\)0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy x = 2 ; y = 3
còn lại tương tự
Vì (x -2 )2012> hoặc =0 mà |y2 -9 |2014 > hoặc =0 nên để (x -2 )2012 + | y2 -9 |2014 =0 thì (x-2)2012 =0 và |y2 -9| =0
=>( x-2)=0 và y2-9=0
=>x=0 và y2=9
=>x=o và y=3 hoặc x= -3
Bài 1 : Xin thôi ạ , bài dài quá . Bài này chỉ cần nhân tích chéo hoặc áp dụng tính chất của dãy tỉ số bằng nhau là ra .
Bài 2:
Gọi độ dài 3 cạnh của tam giác lần lượt là a , b , c ( a , b ,c > 0 ) ( cm )
Theo bài ra , ta có :
\(\hept{\begin{cases}a+b+c=45\\\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\end{cases}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{45}{9}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.2=10\\b=5.3=15\\c=5.4=20\end{cases}}\)
Vậy độ dài 3 cạnh của tam giác đó lần lượt là : 10 cm ; 15 cm ; 20 cm
Bài giải
\(\left(x-7\right)^{y+1}-\left(x-7\right)^{y+11}=0\)
\(\left(x-7\right)^{y+1}\left[1-\left(x-7\right)^{y+10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{y+1}=0\\1-\left(x-7\right)^{y+10}=0\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{y+10}=1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=7\\x-7=1\text{ hoặc }y+10=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=8\text{ hoặc }y=-10\end{cases}}\)
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)\in\left(7\text{ ; }-10\right)\text{ ; }\left(8\text{ ; }-10\right)\)
Mình tưởng y bằng bao nhiêu cx đc vì phần cơ số bằng 0 hoặc 1 r còn gì.