Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow x=2k;y=3k;z=5k\)
Có: xyz=810
\(\Leftrightarrow2k\cdot3k\cdot5k=810\)
\(\Leftrightarrow k^3=27\)
\(\Leftrightarrow k=3\)
=>\(\begin{cases}x=2k=2\cdot3=6\\y=3k=3\cdot3=9\\z=5k=5\cdot3=15\end{cases}\)
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\left(\frac{x}{2}\right)^3=\frac{x}{2}\cdot\frac{x}{2}\cdot\frac{x}{2}=\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x.y.z}{30}=\frac{810}{30}=27\)
\(\Rightarrow\left(\frac{x}{8}\right)^3=27\)
\(\Rightarrow x^3=8\cdot27=216\)
\(\Rightarrow x=6\)
Với x = 6 \(\Rightarrow\begin{cases}\frac{6}{2}=\frac{y}{3}\Rightarrow y=\frac{6\cdot3}{2}=9\\\frac{6}{2}=\frac{z}{5}\Rightarrow x=\frac{6\cdot5}{2}=15\end{cases}\)
Với x = 6 thì bạn tự tính z theo cách tt
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)(1)
đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)(2)
thay (2) vào (1), ta được:
\(xyz=2k\cdot3k\cdot5k=810\)
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)
từ đó
\(\Rightarrow\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot5=15\end{cases}}\)
vậy x=6; y=9; z=15
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\hept{\begin{cases}x=\frac{2y}{3}\\z=\frac{5y}{3}\end{cases}}\)thế vào \(xyz=810\)ta đc: \(\frac{2y.5y.y}{3.3}=810\Leftrightarrow y^3=729\Leftrightarrow y=9\Rightarrow x=6;z=15\)
Ta có: 2x + 1 . 3y = 12x
=> 2x.2.3y = 12x
=> 2.3y = 12x : 2x
=> 2.3y = 6x
=> 2.3y = 2x . 3x
=> x = 1
=> y = x
=> y = 1
Ta có: 2x + 1 . 3y = 12x
=> 2x.2.3y = 12x
=> 2.3y = 12x : 2x
=> 2.3y = 6x
=> 2.3y = 2x . 3x
=> x = 1
=> y = x
=> y = 1
Vậy .....
Tk mik va ket ban voi mik nha
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x.y.z}{2.3.5}=\frac{810}{30}=27\)
\(\Rightarrow\frac{x}{2}=27\Leftrightarrow x=27.2=54\)
\(\Rightarrow\frac{y}{3}=27\Leftrightarrow y=27.3=81\)
\(\Rightarrow\frac{z}{5}=27\Leftrightarrow z=27.5=135\)
Vậy x = 54 ; y = 81 ; z = 135
Ta có: x/2=y/3=z/5=a (a khác 0)
Suy ra: x=2a;y=3a;z=5a
Suy ra:x*y*z=2a*3a*5a=2*3*5*a*a*a=30a3=810
Suy ra:a3=810:30=27.
Suy ra:a=3
Suy ra: x=3*2=6
y=3*3=9
z=3*5=15
c) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(xyz=810\)
Đặt:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
Ta có:
\(x=2k\)
\(y=3k\)
\(z=5k\)
Thế vào xyz = 810, ta có:
\(2k.3k.5k=810\)
\(30.k^3=810\)
\(k^3=27\)
\(\Rightarrow k=3\)
Tới đây tự tính luôn ok :))
x/2=y/3=z/5=k
Suy ra:x=2k;y=3k;z=5k (1)
có xyz=810.thay (1) vào biểu thức ta có
2k*3k*5k=810
k^3*(2*3*5)=810
k^3*30=810
k^3=27
Suy ra : k=3
x/2=3 thì x=6
y/3=3 thì y=9
z/5=3 thì z=15
CHÚC BẠN HỌC TỐT
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k,y=3k,z=5k\)
Ta có:
\(xyz=810\\ \Rightarrow2k.3k.5k=810\\ \Rightarrow30k^3=810\\ \Rightarrow k^3=810:30\\ \Rightarrow k^3=27\\ \Rightarrow k=3\)
Vậy:
x = 2k = 2.3 = 6
y = 3k = 3.3 = 9
z = 5k = 5.3 = 15
Không mất tính tổng quát,giả sử \(x\ge y\).Đặt x = y + m \(\left(m\ge0;m\inℕ\right)\)
\(3^y\left(3^m+1\right)=810\).Dễ thấy: \(3^m+1\) luôn chẵn với mọi \(m\ge0;m\inℕ\)
Mà thương của số chẵn chia cho số chẵn là một số chẵn.Suy ra:
\(3^y=\frac{810}{3^m+1}\) là một số chẵn. Vô lí,vì 3y luôn là số lẻ (với mọi y thuộc N)
Vậy không tồn tại x,y thuộc N thỏa mãn đề bài.