\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Viết lại thành : \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Dựa theo tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

-> x = \(12.\dfrac{3}{2}=18\)

y =\(12.\dfrac{4}{3}=16\)

z =\(12.\dfrac{5}{4}\) = 15

bây giờ mới thấy bài này nhảm v~

17 tháng 7 2016

hjjj

e nek

17 tháng 10 2016

                                               Bài giải

1  Vì : \(b=\frac{a+c}{2}\)     

=> 2b = a+c                        (1)

\(Vì\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{b}+\frac{1}{d}\right)=>\frac{1}{c}=\frac{1}{2}.\left(\frac{b+d}{bd}\right)=\frac{b+d}{2bd}\)  

=> 2bd = c .(b+d)                          (2)

Vì :  2b = a + c

=> 2bd = b .( a +c )

       c.(b+d) = d.(a + c )

\(=>\frac{c}{d}=\frac{a+c}{b+d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

=>    \(\frac{c}{d}=\frac{a}{b}\)

Vậy a , b , c , d có thể lập thành một tỉ lệ thức ( đpcm )

2.     Áp dụng t/c của dãy tí số bằng nhau , ta có :

         \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

=>  12=6x

=> x= 12 : 6

=> x = 2

Thay số vào ta có : \(\frac{2.2+1}{5}=\frac{3y-2}{7}=\frac{5}{5}=1\)

   => 3y - 2 = 7 . 1 = 7

  => 3y = 7 + 2 = 9

  => y                = 3

Vậy  : x = 2

          y = 3

17 tháng 10 2016

Ta có:\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)(T/C)

\(\Rightarrow6x=12\)

\(\Rightarrow\)x=2

Thay x=2 vào đề ta có:

\(\frac{2\cdot2+1}{5}\)=\(\frac{3y-2}{7}\)=1

\(\Rightarrow3y-2=7\)

3y=9

y=3

Vậy x=2;y=3

 

a) \(\frac{x-1}{-15}\)=\(\frac{-60}{x-1}\)

=> (x-1).(x-1)=-60.(-15)

=>(x-1)2=900

=>(x-1)2=302

=>x-1=30

=>x=30+1

=>x=31

học tốt

28 tháng 10 2019

b. Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath

28 tháng 10 2019

b. Câu hỏi của TRẦN THỊ BÍCH HỒNG - Toán lớp 7 - Học toán với OnlineMath

19 tháng 5 2017

a)\(\frac{x-1}{-15}=-\frac{60}{x-1}\)(đk x khác 1)

\(< =>\left(x-1\right)^2=-60.-15=900\)

\(=>\orbr{\begin{cases}x-1=30\\x-1=-30\end{cases}< =>\orbr{\begin{cases}x=31\\x=-29\end{cases}\left(tmđk\right)}}\)

b)\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)(*)

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{\left(2x+1\right)+\left(3y-2\right)}{5+7}=\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

=>\(6x=12=>x=2\)

thay vào (*)=>\(\frac{3y-2}{7}=1=>y=3\)

19 tháng 5 2017

\(a,\frac{x-1}{-15}=-\frac{60}{x-1}\)

\(=>\left(x-1\right)^2=-15.-60\)

\(=>\left(x-1\right)^2=900\)

\(=>\left(x-1\right)^2=\left(31-1\right)^2\)

=> x = 31

6 tháng 6 2016

a) Theo tính chất của dãu tỉ số bằng nhau, ta có:

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{15}\)

=> 6x = 15

=> x = 5/2

Thay x = 5/2, ta có:

\(\frac{2.\frac{5}{2}+1}{5}=\frac{3y-2}{7}\)

\(\Rightarrow\frac{3y-2}{7}=\frac{6}{5}\)

\(\Rightarrow3y-2=\frac{6}{5}.7=\frac{42}{5}\)

\(\Rightarrow3y=\frac{52}{5}\)

\(\Rightarrow y=\frac{52}{15}\)

Mình ăn cơm đây, câu b tối làm cho

17 tháng 7 2016

cả 2 cách đều đúng, nói như vậy phải gộp 2 cái lại

bạn làm theo cách một chúng ta dc:

\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

Đến đây ko phải chỉ có 6x=12 mà phải nghĩ đến nếu 2x+3y-1=0 thì x = bao nhiêu cũng  đúng v~

Khi 2x+3y-1=0 thì nó thành cách 2 đấy

17 tháng 7 2016

Bây giờ mới thấy bài này nhảm quá. Có nhiều x, y mà. Tìm bằng thánh. Gặp bài này nhiều rồi mà giờ mới để ý đó.

v~ thiệt

12 tháng 2 2018

TA CÓ: \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y+1-2}{5+7}=\frac{2x+3y-1}{12}\)

\(\Rightarrow\frac{2x+3y-1}{12}=\frac{2x+3y-1}{6x}\)

\(\Rightarrow6x=12\Rightarrow x=2\)

THAY x=2 VÀO \(\frac{2x+1}{5}\)

CÓ : \(\frac{2x+1}{5}=\frac{2.2+1}{5}=\frac{5}{5}=1\)

\(\Rightarrow\frac{3y-2}{7}=1\left(=\frac{2x+1}{5}\right)\)

\(\Rightarrow3y-2=7\)

\(3y=7-2\)

\(3y=5\)

\(y=\frac{5}{3}\)

VẬY X=2; Y=5\3

CHÚC BẠN HỌC TỐT!!