Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=>x(y-3)+y-3=2
=>(x+1)(y-3)=2
\(\Leftrightarrow\left(x+1;y-3\right)\in\left\{\left(1;2\right);\left(2;1\right);\left(-1;-2\right);\left(-2;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;5\right);\left(1;4\right);\left(-2;1\right);\left(-3;2\right)\right\}\)
1)
Từ: \(\frac{3}{y}=\frac{7}{x}\)=>\(\frac{x}{7}=\frac{y}{3}\)
x+16=y =>x-y=-16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)(vì x-y=-16)
=>\(\frac{x}{7}=-4=>x=-28\)
=>\(\frac{y}{3}=-4=>y=-12\)
Vậy x=-28 ;y=-12
2)
=>x2-3x+5 chia hết cho x-3
mà (x-3)2 chia hết cho x-3
=>x2-3x+5 -(x-3)2 chia hết cho x-3
=> x2-3x+5 -x2-9 chia hết cho x-3
=>-3x+(-4) chia hết cho x-3
lại có : 3.(x-3) chia hết cho x-3
=>-3x-(-4)+3.(x-3) chia hết cho x-3
=>-3x+(-4)+3x-9 chia hết cho x-3
=>-13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
=>x\(\in\){2;4;-9;16}
a: |x+1|+(2y-1)^2=3
mà x,y nguyên
nên (2y-1)^2=1 và |x+1|=2
=>\(\left\{{}\begin{matrix}x+1\in\left\{2;-2\right\}\\2y-1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-3\right\}\\y\in\left\{1;0\right\}\end{matrix}\right.\)
c: |3x-1|+|2y-5|=3
Th1: |3x-1|=0 và |2y-5|=3
=>3x-1=0 và 2y-5 thuộc {3;-3}
=>y thuộc {4;1}(nhận) và x=1/3(loại)
TH2: |3x-1|=1 và |2y-5|=2
=>3x-1 thuộc {1;-1} và 2y-5 thuộc {2;-2}
=>x thuộc {2/3;0} và y thuộc {7/2;3/2}
=>Loại
TH3: |3x-1|=2 và |2y-5|=1
=>3x-1 thuộc {2;-2} và 2y-5 thuộc {1;-1}
=>x=3 và y thuộc {3;2}
TH4: |3x-1|=3 và |2y-5|=0
=>3x-1 thuộc {3;-3} và 2y-5=0
=>y=5/2(loại)
d: |2x+1|+|y-5|=0
=>2x+1=0 và y-5=0
=>y=5(nhận) và x=-1/2(loại)
=>Ko có cặp số (x,y) nào thỏa mãn
\(\frac{x}{5}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{4}=\frac{3x-2y}{3.5-2.4}=\frac{28}{7}=4\)
\(\Leftrightarrow\hept{\begin{cases}x=4.5=20\\y=4.4=16\end{cases}}\)
Do VT ko âm
\(\Rightarrow\hept{\begin{cases}\left(3x-\frac{5}{9}\right)=0\\3y+\frac{1,4}{5}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{27}\\x=\frac{-1,4}{5}.\frac{1}{3}=\frac{-1,4}{15}=\frac{-14}{150}\end{cases}}\)
Vì : \(\left(3x-\frac{5}{9}\right)^{2008}\ge0\) với mọi x
\(\left(3y+\frac{1,4}{5}\right)^{2010}\ge0\) với mọi y
\(\Rightarrow\)\(\left(3x-\frac{5}{9}\right)^{2008}=0\)thì \(3x-\frac{5}{9}=0\)
\(3x=\frac{5}{9}\)\(\Rightarrow x=\frac{5}{9}\cdot\frac{1}{3}=\frac{5}{27}\)
Để \(\left(3y+\frac{1,4}{5}\right)^{2010}=0\Rightarrow3y+\frac{1,4}{5}=0\)
\(3y=\frac{-1,4}{5}\)\(\Rightarrow y=\frac{-1,4}{5}\cdot\frac{1}{3}=\frac{-1,4}{15}=\frac{-14}{150}\)
Vậy \(x=\frac{5}{27}\)và \(y=\frac{-14}{150}\)
ta co |x+7|+|12+x|=5
=>x+7=5=>x=-2(loại)
=>12+x=5=>x=-7 (tm)
=>x=-7
bn thử lấy máy tính mà bấm xem đúng ko nhé
ta có 3xy + 3x = 5
=> 3x(y+1)=5
=>3x và y+1 thuộc ước của 5
ta có bảng sau
\(\frac{5}{3}\)(loại)
sai thì thôi nhé bạn