Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa thiết tương đương với \(xy^2+\frac{x^2}{z}+\frac{y}{z^2}=3\)
Đặt \(a=x;b=y;c=\frac{1}{z}\)khi đó bài toán quy về
\(ab^2+a^2c+c^2b=3\)Tìm GTLN của \(P=\frac{1}{a^4+b^4+c^4}\)
Sử dụng BĐT AM-GM ta có :
\(a^4+b^4+b^4+1\ge4\sqrt[4]{a^4b^4b^4}=4ab^2\)
Bằng cách chứng minh tương tự ta được :
\(b^4+c^4+c^4+1\ge4bc^2\); \(c^4+a^4+a^4+1\ge4ca^2\)
Cộng theo vế các bđt cùng chiều ta được :
\(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=4.3=12\)
\(< =>a^4+b^4+c^4+1\ge\frac{12}{3}=4\)
\(< =>a^4+b^4+c^4\ge4-1=3\)
Vậy \(P\le\frac{1}{3}\)Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1< =>x=y=z=1\)
y=x+z-a (a=2016)
y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)
-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]
-3(x+z)[xz-ay]+2016^3=2017^2
2017 không chia hết cho 3 vô nghiệm nguyên
Bạn test lại xem hay biến đổi nhầm nhỉ
Bị lừa rồi.
thực ra rất đơn giản
\(x-y+z=2016\)(1)
\(x^3-y^3+z^3=2017^2\)(2)
(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)
(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?