K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PN
0
AS
0
N
0
NT
1
KN
29 tháng 7 2020
Đặt \(A=x^2+y^2+z^2+xy+yz+zx\)
Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(2A=x^2+y^2+z^2+\left(x+y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)^2\)
\(=\frac{4\left(x+y+z\right)^2}{3}=12\Rightarrow A\ge6\)
Đẳng thức xảy ra khi x = y = z = 1
11 tháng 7 2016
các bn giỏi toán thân mến,các bn hỏi toán đã biến chúng ta thành osin ,làm k công,chúng ta cứ cày đầu giải còn năn nỉ công nhận,
tui nghĩ chất sám có giá trị cao nhât nên chỉ giải cho các bn giỏi hieu ,còn lại k cần năn nỉ loại ngu công nhận vi chúng chẳng hieu j,
học toán mà k chịu suy nghĩ thi còn lâu moi giỏi