K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

\(2x^2+3xy-2y^2=7\Leftrightarrow2x^2+3xy+\left(-2y^2-7\right)=0\)

\(\Delta=9y^2-8\left(-2y^2-7\right)=25y^2+56>0\)=> luôn có hai nghiệm phân biệt

Để pt có nghiệm nguyên thì \(25y^2+56=k^2\Leftrightarrow\left(k-5y\right)\left(k+5y\right)=56\)

Xét các trường hợp được \(\left(k;y\right)=\left(\pm9;\pm1\right)\)

Với y = 1 được x = -3 (nhận) hoặc x = 3/2 (loại)

Với y = -1 được x = 3 (nhận) hoặc x = -3/2 (loại)

Vậy (x;y) = (-3;1) ; (3;-1)

24 tháng 7 2019

\(\left(x-1\right)^2+\left(2y-3\right)^2=5\)

\(\Rightarrow\left(2y-3\right)^2\le5\)

Mà 2y - 3 lẻ nên \(\left(2y-3\right)^2=1\)

                   \(\Leftrightarrow\orbr{\begin{cases}2y-3=1\\2y-3=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=2\\y=1\end{cases}}\)

Thay vô rồi tìm đc x

21 tháng 7 2017

a) \(\left(2x+3y\right)^2=4x^2+12xy+9y^2\)

b) \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=\left(x^2\right)^2-\left(\dfrac{2}{5}y\right)^2\)

\(=x^4-\dfrac{4}{25}y^2\)

c) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+3y.x+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3=x^3-27y^3\)

d) \(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)

e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)

\(=\left(x^2\right)^3-3^3=x^6-27\)