Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 45 = y
Do x2 + 45 > 2 => y nguyên tố > 2 => y lẻ
=> x2 chẵn => x chẵn
Mà 2 là số nguyên tố chẵn duy nhất => x = 2
=> y = 22 + 45 = 49, ko là số nguyên tố, hình như là y2 mới đúng bn ạ
b) 2x = y + y + 1
=> 2x = 2y + 1
Do 2y + 1 là số lẻ => 2x lẻ => x = 0, không là số nguyên tố
Cả 2 câu sao đều vô lí z bn
1. Tìm n thuộc N để các biểu thức là số nguyên tố
a ) \(P=\left(n-3\right)\left(n+3\right)\)
\(\left(n-3\right)\left(n+3\right)=0\)
\(n^2-3^2=0\)
\(n^2-9=0\)
\(n^2=9\)
\(n=\sqrt{9}\)
\(n=3\)
a)\(\frac{x}{2}-\frac{2}{y}=\frac{1}{2}\)
=> \(\frac{2}{y}=\frac{x}{2}-\frac{1}{2}\)
=> \(\frac{2}{y}=\frac{x-1}{2}\)
=> \(y\left(x-1\right)=4\)
Vì x,y \(\inℕ\)nên x - 1 \(\inℕ\)=> y và x - 1 thuộc Ư(4)
Ta có : Ư(4) = {1;2;4}
Lập bảng :
y | 1 | 2 | 4 |
x - 1 | 4 | 2 | 1 |
x | 5 | 3 | 2 |
Vậy \(\left(x,y\right)\in\left\{\left(5,1\right);\left(3,2\right);\left(2,4\right)\right\}\)
b) \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)
=> \(\frac{5}{x}=\frac{1}{6}+\frac{y}{3}\)
=> \(\frac{5}{x}=\frac{1}{6}+\frac{2y}{6}\)
=> \(\frac{5}{x}=\frac{1+2y}{6}\)
=> \(x\left(1+2y\right)=30\)
Vì x,y thuộc N nên 1 + 2y thuộc N => x và 1 + 2y thuộc Ư(30)
Ta có : Ư(30) = {1;2;3;5;6;10;15;30}
Lập bảng :
x | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
1 + 2y | 30 | 15 | 10 | 6 | 5 | 3 | 2 | 1 |
2y | 29 | 14 | 9 | 5 | 4 | 2 | 1 | 0 |
y | loại | 7 | loại | loại | 2 | 1 | loại | 0 |
Vậy : \(\left(x,y\right)\in\left\{\left(2,7\right);\left(6,2\right);\left(30,0\right)\right\}\)
c) Làm nốt
Câu 1:
\(xy+x+y=17\)
\(\Rightarrow\left(xy+x\right)+\left(y+1\right)=18\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=18\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=18\)
Do \(x,y\in N\Rightarrow x+1,y+1\ge1\)
Từ đó ta có bảng sau:
x + 1 | 1 | 2 | 3 | 6 | 9 | 18 |
y + 1 | 18 | 9 | 6 | 3 | 2 | 1 |
x | 0 | 1 | 2 | 5 | 8 | 17 |
y | 17 | 8 | 5 | 2 | 1 | 0 |
1/ (x+1)(y+2) =5
Do x;y thuộc N nên x+1 ; y+2 cũng thuộc N
\(TH1:\Leftrightarrow\hept{\begin{cases}x+1=1\\y+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-1\\y=5-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=3\end{cases}}}\\\)
\(TH2:\Leftrightarrow\hept{\begin{cases}x+1=5\\y+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5-1\\y=1-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=-1\end{cases}}}\)
x | 0 | 4 |
y | 3 | -1 |
mà x;y\(\in\)N nên x;y=0;3
Các bài khác bạn làm tương tự nha! (vì mk viết rất chậm )
Với \(y\ge5\):
\(VP=1!+2!+3!+...+y!\)
có \(k!=1.2.3.4.5.....k\)có chữ số tận cùng là \(0\)với \(k\ge5\).
Do đó \(VP\)có chữ số tận cùng là chữ số tận cùng của \(1!+2!+3!+4!=33\)
nên có chữ số tận cùng là \(3\).
Mà số chính phương không thể có chữ số tận cùng là \(3\)do đó phương trình vô nghiệm với \(y\ge5\).
Thử trực tiếp từng trường hợp \(1\le y\le4\)ta được các nghiệm là \(\left(1,1\right),\left(3,3\right)\).
( x + 1 ) . ( y - 3 ) = 12
=> x + 1 , y - 3 thuộc Ư ( 12 ) = { 1 ; 2 ; 3 ; 5 ; 6 ; 12 }
Lập bảng tìm giá trị tương ứng x , y
ta có: \(\left(x+1\right).\left(y-3\right)=12=12.1=\left(-12\right).\left(-1\right)=3.4=\left(-3\right).\left(-4\right)=2.6\)\(=\left(-2\right).\left(-6\right)\)
mà x thuộc N, 1 thuộc N
=> x+1 không thể nào mang giá trị âm
\(\Rightarrow\left(x+1\right).\left(y-3\right)=12.1=3.4=2.6\)
TH1: * x+1 = 12 => x = 11 (TM)
y-3 = 1 => y = 4 (TM)
* x+1 = 1 => x= 0 (TM)
y -3 = 12 => y = 15 (TM)
TH2:*x+1 = 3 => x= 2 (TM)
y-3 = 4 => y = 7 (TM)
* x+1 = 4 => x = 3 (TM)
y-3 = 3 => y =6 (TM)
TH3: * x+1 = 2 => x = 1 (TM)
y-3 = 6 => y = 9 (TM)
* x+1 = 6 => x = 5 (TM)
y - 3 = 2 => y = 5 (TM)
KL: (x;y)=...