Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y+2⋮x;x+2⋮y\Rightarrow\left(x+2\right)\left(y+2\right)⋮xy\Rightarrow xy+2x+2y+4⋮xy\Rightarrow2x+2y+4⋮xy\)
\(\Rightarrow2\left(x+y+2\right)⋮xy\Rightarrow2⋮xy\Rightarrow xy\inƯ\left(2\right)=1;2\)
\(xy=1\Rightarrow x=1,y=1\Rightarrow y+2=1+2=3⋮x=1\Rightarrow y+2⋮x\)
\(x+2=1+2=3⋮y=1\Rightarrow x+2⋮y\)
\(\Rightarrow x=1,y=1\left(tm\right)\)
\(xy=2\Rightarrow x=1,y=2;x=2,y=1\Rightarrow x+2=1+2=3\)ko chia hết cho \(y=2\Rightarrow x+2\)ko chia hết cho y
\(\Rightarrow x=1,y=2\left(ktm\right)\Rightarrow x=2,y=1\left(ktm\right)\)
vậy x=1,y=1
\(1024=2^{10}\)\(\Rightarrow2^y\left(2^m-1\right)=2^{10}.1\Rightarrow\hept{\begin{cases}y=10\\x=11\end{cases}}\)
=> x>y
x-y =m
\(x+y=x^2+\sqrt{y}=1\)
\(\left\{y=1-x;x^2+\sqrt{y}=1\right\}\)
\(\Rightarrow x=\left\{0;1\right\}\)\(;\)\(y=\left\{1;0\right\}\)
\(x+y=x^2\sqrt{y}=1\)
\(\hept{ }y=1-x;x^2+\sqrt{y}=1\)
\(\Rightarrow x=\left\{0;1\right\};y=\left\{0;1\right\}\)
\(x^2+2x+13=y^2\)
\(\Rightarrow4x^2+8x+52=4y^2\)
\(\Rightarrow\left(2x+2\right)^2+48=4y^2\)
\(\Rightarrow\left(2x+2\right)^2-4y^2=-48\)
\(\Rightarrow\left(2x-2y+2\right)\left(2x+2y+2\right)=-48\)
\(\Rightarrow\left(x-y+1\right)\left(x+y+1\right)=-12\) (1)
Ta có: \(x-y+1+x+y+1=2x+2⋮2\)
Do đó: x - y + 1 và x + y + 1 cùng tĩnh chẵn lẻ.
Mà \(x,y\in N\)nên \(x-y+1< x+y+1\) (2)
Từ (1) và (2) ta được: \(\hept{\begin{cases}x-y+1=-2\\x+y+1=6\end{cases}\Rightarrow\hept{\begin{cases}x-y=-3\\x+y=5\end{cases}\Rightarrow}}\hept{\begin{cases}x=1\\y=4\end{cases}}\) (thỏa mãn)
Vậy x = 1 và y = 4
Lời giải:
$x+y^2-x^2-y=24$
$\Leftrightarrow (x-y)-(x^2-y^2)=24$
$\Leftrightarrow (x-y)-(x-y)(x+y)=24$
$\Leftrightarrow (x-y)(1-x-y)=24$
$\Leftrightarrow (y-x)(x+y-1)=24$
Ta thấy: $y-x+x+y-1=2y-1$ lẻ nên $y-x, x+y-1$ khác tính chẵn lẻ.
Mặt khác. Dễ thấy nếu $x=y=0$ thì vô lý. Do đó $x+y-1\geq 0$
$\Rightarrow y-x\geq 0$
Từ đây ta có các TH sau:
$y-x=1; x+y-1=24$
$\Rightarrow y=13; x=12$ (thỏa mãn)
$y-x=3; x+y-1=8$
$\Rightarrow y=6; x=3$ (thỏa mãn)
$y-x=8; x+y-1=3$
$\Rightarrow y=6; x=-2$ (loại)
$y-x=24; x+y-1=1$
$\Rightarrow y=13; x=-11$ (loại)
Vậy.........