\(\sqrt{xy}\) - 4\(\sqrt{x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

Điều kiện:\(x,y\ge0\)

\(2x+y-2\sqrt{xy}-4\sqrt{x}+2\sqrt{y}+2=0\)

\(\Leftrightarrow\left(x-2\sqrt{xy}+y\right)-2\left(\sqrt{x}-\sqrt{y}\right)+1+\left(x-2\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}-1\right)^2+\left(\sqrt{x}-1\right)^2=0\)

\(Do\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}-1\right)^2\\\left(\sqrt{x}-1\right)^2\ge0\end{cases}\ge0}\)

\(Nên\hept{\begin{cases}\sqrt{x}-\sqrt{y}-1=0\\\sqrt{x}-1=0\end{cases}}\)

Tự tìm x,y nha!!

8 tháng 9 2017

thanks

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

DD
22 tháng 5 2021

\(P=2x-3\sqrt{xy}+y=2x-3\sqrt{xy}+y+\left(-x-\sqrt{xy}+4y-4\sqrt{y}+16\right)\)

\(=x-4\sqrt{xy}+5y-4\sqrt{y}+16\)

\(=\left(\sqrt{x}-2\sqrt{y}\right)^2+\left(\sqrt{y}-2\right)^2+12\ge12\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\sqrt{x}=2\sqrt{y}\\\sqrt{y}-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=4\end{cases}}\).

Với \(x=16,y=4\)thỏa mãn giả thiết. 

Vậy \(minP=12\)

22 tháng 5 2021

đề gì vậy zời

Bài 1:Giải các phương trình sau:a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)Bài 2:Cho a,b,c thỏa mãn a+b+c=1Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)Bài 3:Giải hệ phương trình:\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)Bài 4:Tìm các cặp số...
Đọc tiếp

Bài 1:Giải các phương trình sau:

a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)

b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)

c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)

d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)

e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)

Bài 2:Cho a,b,c thỏa mãn a+b+c=1

Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)

Bài 3:Giải hệ phương trình:

\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)

Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:

\(x^2+2y^2+2xy-5x-5y=-6\)

Để (x+y) nguyên

Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện

\(x+y+z+xy+yz+xz=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:

\(a\ne0\)\(4a+2b+c+d=0\)

Chứng minh \(b^2\ge4ac+4ad\)

Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt

 

2
2 tháng 4 2019

 Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)

        \(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)

\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)

 Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^

4 tháng 4 2019

Có bạn nào biết giải câu f ko giải hộ mình với

7 tháng 2 2022

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

7 tháng 2 2022

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

23 tháng 8 2017

\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2-2xy\ge0\)

\(\Leftrightarrow x^2+y^2\ge2xy\Leftrightarrow x^2+y^2+2xy\ge4xy\)

\(\Leftrightarrow\left(x+y\right)^2\ge4xy\Rightarrow1\ge4xy\Leftrightarrow xy\le\frac{1}{4}\)(1)

\(\left(x-y\right)^2\ge0\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow\left(x+y\right)^2\ge2\Leftrightarrow x+y\ge\sqrt{2}\)

23 tháng 8 2017

Từ phần a ta có \(x+y\le\sqrt{2}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{2x+1}+\sqrt{2y+1}\right)^2\)

\(\le\left(1+1\right)\left(2\left(x+y\right)+2\right)\)

\(=2\cdot\left(2\left(x+y\right)+2\right)\le2\cdot\left(2\sqrt{2}+2\right)\)

\(=4\sqrt{2}+4=VP^2\)

Suy ra \(VT\ge VP\) (ĐPCM)

2 tháng 7 2017

Vì  \(x+y+z=2\)

Ta có  \(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x^2+xy\right)+\left(xz+yz\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{x+y+x+z}{2}=\frac{2x+y+z}{2}\)

Tương tự  \(\sqrt{2y+zx}\le\frac{x+2y+z}{2}\)  và  \(\sqrt{2z+xy}\le\frac{x+y+2z}{2}\)

Do đó  \(P\le\frac{2x+y+z}{2}+\frac{x+2y+z}{2}+\frac{x+y+2z}{2}=\frac{4\left(x+y+z\right)}{2}=\frac{4.2}{2}=4\)

Vậy  \(P\le4\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x+y=x+z\\y+x=y+z\\z+x=z+y\end{cases}}\)  và x+y+z=2   \(\Leftrightarrow\)  \(x=y=z=\frac{2}{3}\)

3 tháng 1 2021

\(P\ge\frac{x+y+z}{2}\ge\frac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\frac{1}{2}\)

"=" khi \(x=y=z=\frac{1}{3}\)

19 tháng 5 2018

GTLN hay GTNN bạn ơi ;(

19 tháng 5 2018

GTNN bạn