\(10^x-25.2^x=4.5^x-100\)

2,   \(3...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

1) \(10^x-5^2.2^x=2^2.5^x-10^2\)

\(\Leftrightarrow10^2\left(10^{x-2}+1\right)=5^2.2^2\left(2^{x-2}+5^{x-2}\right)\)

\(\Leftrightarrow10^2\left(10^{x-2}+1\right)=10^2\left(2^{x-2}+5^{x-2}\right)\)

\(\Leftrightarrow\left(10^{x-2}+1\right)=\left(2^{x-2}+5^{x-2}\right)\)

\(\Leftrightarrow\left(10^{x-2}+1^{x-2}\right)=\left(2^{x-2}+5^{x-2}\right)\)

Để 2 vế bằng nhau \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

9 tháng 4 2018

Ta có:\(\left|19x+5y\right|+1975=\left|19y+5x\right|+2014^x\)

\(\Leftrightarrow\left|19x+5y\right|-\left|19y+5x\right|=2014^x-1975\)

Vì \(19x+5y-\left(19y+5x\right)=19x+5y-19y-5x=14x-14y⋮2\)

nên \(\left|19x+5y\right|-\left|19y+5x\right|⋮2\)\(\Rightarrow2014^x-1975⋮2\)

\(\Rightarrow2014^x\) lẻ\(\Rightarrow x=0\)

Thay x=0 vào ta có:\(\left|5y\right|-\left|19y\right|=-1974\)

\(y\ge0\) nên \(\hept{\begin{cases}5y\ge0\\19y\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|5y\right|=5y\\\left|19y\right|=19y\end{cases}}\)\(\Rightarrow5y-19y=-1974\)

\(\Rightarrow-14y=-1974\Rightarrow y=141\)

Vậy x=0,y=141 thỏa mãn

13 tháng 6 2019

\(\left|19x+5y\right|+1975=\left|19y+5x\right|+2014^x\)

\(\Leftrightarrow1975-2014^x=\left|19y+5x\right|-\left|19x+5y\right|\)

\(\Leftrightarrow1975-2014^x=\left(\left|19y+5x\right|+19y+5x\right)-\left(\left|19x+5y\right|+19x+5y\right)-14\left(x+y\right)\left(1\right)\)

Ta có bổ đề:\(\left|a\right|+a\) là số chẵn với \(\forall a\in Z\)

\(\Rightarrow\left(1\right)\)chẵn/\(\Rightarrow2014^x\) lẻ \(\Rightarrow x=0\)

Thay \(x=0\) vào \(pt\) và kết hợp với \(x,y\in N\) thì tìm được \(x=0;y=141\)

10 tháng 9 2017

ngu như con lợn

11 tháng 9 2017

bạn nói mình ngu sao bạn ko giải đi

29 tháng 6 2019

câu a : Bạn lập bảng rồi tìm x,,y nhé

câu b :

\(x-\frac{3}{y}=\frac{x}{y}\)

\(\Leftrightarrow x=\frac{x}{y}+\frac{3}{y}\)

\(\Leftrightarrow x=\frac{3+x}{y}\)

\(\Leftrightarrow3+x=xy\)

\(\Leftrightarrow xy-x=3\)

\(\Leftrightarrow x.\left(y-1\right)=3\)

Lập bảng tìm x,y

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
17 tháng 10 2018

a) Theo đề, ta có:

  \(\frac{x}{2}=\frac{y}{3}\) và\(\frac{y}{5}=\frac{z}{7}\) và x+y+z=98

=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) và x+y+z=98

Theo tính chất dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) \(=\frac{x+y+z}{10+15+21}=\frac{98}{46}=\frac{49}{23}\)

       Suy ra:      \(x=\frac{490}{23};y=\frac{735}{23};z=\frac{1029}{23}\)

b) Theo đề, ta có:

     2x=3y=5z và x+y-z=95

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và x+y-z=95

     Theo tính chất dãy tỉ số bằng nhau, ta có:

         \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) \(=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

         Suy ra:    x=20 ; y=50 ; z=30

c) Theo đề, ta có:

       \(\frac{x}{2}=\frac{y}{3}\) va xy=54

     Đặt \(\frac{x}{2}=\frac{y}{3}\)\(=t\) 

          nên x=2t

                 y=3t

Ta có:     x.y  =54

             2t .3t=54

                6t2=54

                  t2=9

             => t =+3

Suy ra:   x=6 hoặc x= -6

              y=9 hoặc y= -9

d) Theo đề, ta có:

       \(\frac{x}{5}=\frac{y}{3}\) và x2+y2=4

    Đặt  \(\frac{x}{5}=\frac{y}{3}=t\)

       nên x=5t

              y=3t

    Ta có:      x2+y2=4

                  (5t)2+(3t)2=4

                        8t2      =4

                          t2      =\(\frac{1}{2}\)

 Suy ra: VÔ LÝ

 hok tot nha!!!

23 tháng 7 2019

a, 5x = 2y

 \(\Rightarrow\frac{x}{2}=\frac{y}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}\Rightarrow}\hept{\begin{cases}x^3=\left(2k\right)^3\\y^2=\left(5k\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}x^3=8k^3\\y^2=25k^2\end{cases}}\)

=> 8k3 . 25k2 = 200

=>200k5 = 200

=> k5 = 1

=> k = 1

\(\Rightarrow\hept{\begin{cases}x=2k=2.1=2\\y=5k=5.1=5\end{cases}}\)

b, Đặt \(\frac{x}{3}=\frac{y}{4}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\Rightarrow\hept{\begin{cases}x^2=\left(3k\right)^2\\y^2=\left(4k\right)^2\end{cases}\Rightarrow\hept{\begin{cases}x^2=9k^2\\y^2=16k^2\end{cases}}}\)

=> 9k2 + 16k2 = 100

=> 25k2 = 100

=> k2 = 4

=> k = ±2

=> +) x = 3k = 3 . 2 = 6

     +) x = 3k = 3 . (-2) = -6

=> +) y = 4k = 4 . 2 = 8

     +) y = 4k = 4 . (-2) = -8

c, Đặt \(\frac{x}{5}=\frac{y}{2}=\frac{z}{-3}=k\)

\(\Rightarrow\hept{\begin{cases}x=5k\\y=2k\\z=-3k\end{cases}}\)

=> 5k . 2k . (-3)k = 240

=> -30k3 = 240

=> k3 = -8

=> k = -2

\(\Rightarrow\hept{\begin{cases}x=5k=5.\left(-2\right)=-10\\y=2k=2.\left(-2\right)=-4\\z=-3k=-3.\left(-2\right)=6\end{cases}}\)