Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left|19x+5y\right|+1975=\left|19y+5x\right|+2014^x\)
\(\Leftrightarrow\left|19x+5y\right|-\left|19y+5x\right|=2014^x-1975\)
Vì \(19x+5y-\left(19y+5x\right)=19x+5y-19y-5x=14x-14y⋮2\)
nên \(\left|19x+5y\right|-\left|19y+5x\right|⋮2\)\(\Rightarrow2014^x-1975⋮2\)
\(\Rightarrow2014^x\) lẻ\(\Rightarrow x=0\)
Thay x=0 vào ta có:\(\left|5y\right|-\left|19y\right|=-1974\)
Vì \(y\ge0\) nên \(\hept{\begin{cases}5y\ge0\\19y\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|5y\right|=5y\\\left|19y\right|=19y\end{cases}}\)\(\Rightarrow5y-19y=-1974\)
\(\Rightarrow-14y=-1974\Rightarrow y=141\)
Vậy x=0,y=141 thỏa mãn
\(\left|19x+5y\right|+1975=\left|19y+5x\right|+2014^x\)
\(\Leftrightarrow1975-2014^x=\left|19y+5x\right|-\left|19x+5y\right|\)
\(\Leftrightarrow1975-2014^x=\left(\left|19y+5x\right|+19y+5x\right)-\left(\left|19x+5y\right|+19x+5y\right)-14\left(x+y\right)\left(1\right)\)
Ta có bổ đề:\(\left|a\right|+a\) là số chẵn với \(\forall a\in Z\)
\(\Rightarrow\left(1\right)\)chẵn/\(\Rightarrow2014^x\) lẻ \(\Rightarrow x=0\)
Thay \(x=0\) vào \(pt\) và kết hợp với \(x,y\in N\) thì tìm được \(x=0;y=141\)
câu a : Bạn lập bảng rồi tìm x,,y nhé
câu b :
\(x-\frac{3}{y}=\frac{x}{y}\)
\(\Leftrightarrow x=\frac{x}{y}+\frac{3}{y}\)
\(\Leftrightarrow x=\frac{3+x}{y}\)
\(\Leftrightarrow3+x=xy\)
\(\Leftrightarrow xy-x=3\)
\(\Leftrightarrow x.\left(y-1\right)=3\)
Lập bảng tìm x,y
a) Theo đề, ta có:
\(\frac{x}{2}=\frac{y}{3}\) và\(\frac{y}{5}=\frac{z}{7}\) và x+y+z=98
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) và x+y+z=98
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\) \(=\frac{x+y+z}{10+15+21}=\frac{98}{46}=\frac{49}{23}\)
Suy ra: \(x=\frac{490}{23};y=\frac{735}{23};z=\frac{1029}{23}\)
b) Theo đề, ta có:
2x=3y=5z và x+y-z=95
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và x+y-z=95
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) \(=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
Suy ra: x=20 ; y=50 ; z=30
c) Theo đề, ta có:
\(\frac{x}{2}=\frac{y}{3}\) va xy=54
Đặt \(\frac{x}{2}=\frac{y}{3}\)\(=t\)
nên x=2t
y=3t
Ta có: x.y =54
2t .3t=54
6t2=54
t2=9
=> t =+3
Suy ra: x=6 hoặc x= -6
y=9 hoặc y= -9
d) Theo đề, ta có:
\(\frac{x}{5}=\frac{y}{3}\) và x2+y2=4
Đặt \(\frac{x}{5}=\frac{y}{3}=t\)
nên x=5t
y=3t
Ta có: x2+y2=4
(5t)2+(3t)2=4
8t2 =4
t2 =\(\frac{1}{2}\)
Suy ra: VÔ LÝ
hok tot nha!!!
a, 5x = 2y
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}\Rightarrow}\hept{\begin{cases}x^3=\left(2k\right)^3\\y^2=\left(5k\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}x^3=8k^3\\y^2=25k^2\end{cases}}\)
=> 8k3 . 25k2 = 200
=>200k5 = 200
=> k5 = 1
=> k = 1
\(\Rightarrow\hept{\begin{cases}x=2k=2.1=2\\y=5k=5.1=5\end{cases}}\)
b, Đặt \(\frac{x}{3}=\frac{y}{4}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\Rightarrow\hept{\begin{cases}x^2=\left(3k\right)^2\\y^2=\left(4k\right)^2\end{cases}\Rightarrow\hept{\begin{cases}x^2=9k^2\\y^2=16k^2\end{cases}}}\)
=> 9k2 + 16k2 = 100
=> 25k2 = 100
=> k2 = 4
=> k = ±2
=> +) x = 3k = 3 . 2 = 6
+) x = 3k = 3 . (-2) = -6
=> +) y = 4k = 4 . 2 = 8
+) y = 4k = 4 . (-2) = -8
c, Đặt \(\frac{x}{5}=\frac{y}{2}=\frac{z}{-3}=k\)
\(\Rightarrow\hept{\begin{cases}x=5k\\y=2k\\z=-3k\end{cases}}\)
=> 5k . 2k . (-3)k = 240
=> -30k3 = 240
=> k3 = -8
=> k = -2
\(\Rightarrow\hept{\begin{cases}x=5k=5.\left(-2\right)=-10\\y=2k=2.\left(-2\right)=-4\\z=-3k=-3.\left(-2\right)=6\end{cases}}\)
1) \(10^x-5^2.2^x=2^2.5^x-10^2\)
\(\Leftrightarrow10^2\left(10^{x-2}+1\right)=5^2.2^2\left(2^{x-2}+5^{x-2}\right)\)
\(\Leftrightarrow10^2\left(10^{x-2}+1\right)=10^2\left(2^{x-2}+5^{x-2}\right)\)
\(\Leftrightarrow\left(10^{x-2}+1\right)=\left(2^{x-2}+5^{x-2}\right)\)
\(\Leftrightarrow\left(10^{x-2}+1^{x-2}\right)=\left(2^{x-2}+5^{x-2}\right)\)
Để 2 vế bằng nhau \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)