Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x nguyên, y nguyên
=> x+y, xy nguyên
Ta có: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=1995⋮3\)
=> \(\left(x+y\right)^3⋮3\)
vì 3 là số nguyên tố
=> x+y chia hết cho 3(2)
=>\(\left(x+y\right)^3⋮9\) và 3xy(x+y) chia hết cho 9
=> 1995 chia hết cho 9 vô lí
Vậy nên không tồn tại x, y nguyên thỏa mãn
Ta có: \(x^2-y^2=2002\Leftrightarrow\left(x-y\right)\left(x+y\right)=2002\)
Vì x=\(\frac{\left(x+y\right)+\left(x-y\right)}{2}\in Z\)
=> (x+y)+(x-y) là số chẵn
TH1: x+y là số chẵn, x-y là số chẵn
=> (x+y) (x-y) chia hết cho 4
=> 2002 chia hết cho 4 vô lí
TH2: x+y là số lẻ, x-y là số lẻ
=> (x-y)(x+y) là một số lẻ
=> 2002 là số lẻ vô lí
Vậy ko tồn tại x, y thỏa mãn
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
Ta có 02 = (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) = x2 + y2 + z2 + 2.0
=> x2 + y2 + z2 = 0 <=> z = y = z = 0
=> S = (0 - 1)1995 + 01996 + (0 + 1)1997 = -1 + 1 = 0
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
Chắc là x, y ∈ Z
Ta có : \(y^2=x^2+12x+1995\)
<=> \(\left(x^2+12x+36\right)-y^2+1959=0\)
<=> \(\left(x+6\right)^2-y^2=-1959\)
<=> \(\left(x-y+6\right)\left(x+y+6\right)=-1959\)
Vì x, y ∈ Z => \(\hept{\begin{cases}x-y+6\\x+y+6\end{cases}\in}ℤ\)
Lại có \(-1959=-1\cdot1959=-1959\cdot1=-3\cdot653=-653\cdot3\)
=> Ta có bảng sau :
Vậy ( x ; y ) = { ( 973 ; 980 ) , ( -985 ; -980 ) , ( 973 ; -980 ) , ( -985 ; 980 ) , ( 319 ; 328 ) , ( -331 ; -328 ) , ( 319 ; -328 ) , ( -331 ; 328 ) }
có điều kiện x,y nguyên hay gì không e nhỉ