\(\frac{x^2+1}{y^2}+4\) là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2019

a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)

\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)

\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)

\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)

\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)

Vậy x = y = 1

b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)

\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)

\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)

\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)

Lập bảng:

\(a-n-1\)\(1\)\(7\)\(-1\)\(-7\)
\(a+n+1\)\(7\)\(1\)\(-7\)\(-1\)
\(a-n\)\(2\)\(8\)\(0\)\(-6\)
\(a+n\)\(6\)\(0\)\(-8\)\(-2\)
\(a\)\(4\)\(4\)\(-4\)\(-4\)
\(n\)\(2\)\(-4\)\(-4\)\(2\)

Mà n là số tự nhiên nên n = 2.