K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

\(3^x+111=\left(y-3\right)\left(y-5\right)\)

\(3^x+111=y\left(y-5\right)-3\left(y-5\right)\)

\(3^x+111=y^2-5y-3y+15\)

\(3^x+111=y^2-8y+15\)

\(3^x+111-15=y^2-8y\)

\(3^x+96=y^2-8y\)

\(3\left(3^{x-1}+32\right)=y\left(y-8\right)\)

=> \(\hept{\begin{cases}y=3\\3^{x-1}+32=y-8\end{cases}}\)hoặc  \(\hept{\begin{cases}y-8=3\\3^{x-1}+32=y\end{cases}}\)

=> \(\hept{\begin{cases}y=3\\3^{x-1}+32=3-8=-5\end{cases}}\)hoặc \(\hept{\begin{cases}y=3+8=11\\3^{x-1}+32=11\end{cases}}\)

=> \(\hept{\begin{cases}y=3\\3^{x-1}=-5-32=-37\end{cases}}\)hoặc \(\hept{\begin{cases}y=11\\3^{x-1}=11-32=-21\end{cases}}\)

.............................................................................................................................................................

=> \(x,y\in\varnothing\)

.............................................................................................................................................................

6 tháng 5 2018

hình như mình làm lộn rồi .............................

cái chỗ => ấy mình lộn 

SORRY

15 tháng 3 2023

wdwwđwdsswsw

22 tháng 10 2021

Ta có: (x-y + (y-z) + (z-x) = 0

Đặt x - y = a, y-z = b, z-x = c thì a+b+c=0

Khi đó \(a^5+b^5+c^5⋮5abc\)

Vậy ta có đpcm

2 tháng 10 2020

\(pt=\left(x^3-4x^2+4x\right)+\left(y^3-4y^2+4y\right)+\left(8x^2+8y^2-16xy\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2+y\left(y-2\right)^2+8\left(x-y\right)^2=0\left(1\right)\)

Do \(x\left(x-2\right)^2\ge0,y\left(y-2\right)^2\ge0,8\left(x-y\right)^2\ge0\left(2\right)\)

Từ (1) và (2) =>x=y=2

24 tháng 6 2021

Giả sử \(x\ge y\ge z\ge t\)

Có 5(x+y+z+t) = 2xyzt

<=> \(2=\dfrac{5}{yzt}+\dfrac{5}{xyz}+\dfrac{5}{xyt}+\dfrac{5}{xzt}+\dfrac{10}{xyzt}\le\dfrac{20}{t^3}+\dfrac{10}{t^4}\le\dfrac{30}{t^3}\)

<=> t3 \(\le15\)

<=> \(\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

TH1: t = 1

<=> \(2=\dfrac{5}{yz}+\dfrac{5}{xyz}+\dfrac{5}{xy}+\dfrac{5}{xz}+\dfrac{10}{xyz}=\dfrac{5}{xy}+\dfrac{5}{yz}+\dfrac{5}{zx}+\dfrac{15}{xyz}\)

\(\le\dfrac{15}{z^2}+\dfrac{15}{z^3}\le\dfrac{30}{z^2}\)

<=> z2 \(\le15\)

<=> \(\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)

- Với z = 1

PT <=> 5 (x+y+2) + 10 = 2xy

<=> (2x-5)(2y-5) = 65

<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=35\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=9\\y=5\end{matrix}\right.\end{matrix}\right.\)

Vậy (x;y;z;t) = (35;3;1;1) hoặc (9;5;1;1) và có hoán vị

- Với z = 2;3 => Vô nghiệm

TH2: t = 2

PT <=> 5(x+y+z) + 20 = 4xyz

<=> \(4=\dfrac{5}{xy}+\dfrac{5}{yz}+\dfrac{5}{zx}+\dfrac{20}{xyz}\le\dfrac{35}{z^2}\)

<=> \(\left[{}\begin{matrix}z=1\left(l\right)\\z=2\left(c\right)\end{matrix}\right.\)

<=> 5(x+y+4) + 10 = 8xy

<=> (8x-5)(8y-5) = 265

=> Vô nghiệm

KL: Vậy (x;y;z;t) = (35;3;1;1) hoặc (9;5;1;1) và có hoán vị

 

5 tháng 3 2019

Bạn chú ý x;y là số nguyên dương, như thế hiển nhiên ta sẽ có x+y>x−(y+6) nhưng mà theo điều giả sử x≥y+6  nên x−(y+6)≥0 với mọi x,y

Lai do x,y nguyên dương nên x+y≥1 Như vậy hiển nhiên là (x+y)^3>(x−y−6)^2 nên pt vô nghiệm

5 tháng 3 2019

https://diendantoanhoc.net/topic/113122-gi%E1%BA%A3i-ph%C6%B0%C6%A1ng-tr%C3%ACnh-nghi%E1%BB%87m-nguy%C3%AAn-d%C6%B0%C6%A1ng-xy3x-y-62/