K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Ta có: \(9xy+3x+3y=51\)

\(\Leftrightarrow3x\left(3y+1\right)+3y+1=52\)

\(\Leftrightarrow\left(3x+1\right)\left(3y+1\right)=52\)

vì x,y là số nguyên dương => 3x + 1; 3y + 1 cũng là số nguyên dương.

\(\Rightarrow3x+1\inƯ\left(52\right)=\left\{1;2;3;13;26;52\right\}\)

mà: \(x>0\Rightarrow3x+1>1\)

ta có: \(3x+1:3\left(1\right)\)

\(\Rightarrow3x+1\in\left\{4;13\right\}\)

\(\Rightarrow x\in\left\{1;4\right\}\)

\(\Rightarrow y\in\left\{4;1\right\}\)

\(\Rightarrow\left(x,y\right)\in\left\{\left(1,4\right);\left(4,1\right)\right\}\)

29 tháng 3 2020

please

29 tháng 3 2020

Toán lp mấy mà khó zậy bn?? xl mk hông bt lm

NV
18 tháng 4 2021

Trừ vế cho vế:

\(xy+z-\left(x+yz\right)=1\)

\(\Leftrightarrow x\left(y-1\right)-z\left(y-1\right)=1\)

\(\Leftrightarrow\left(x-z\right)\left(y-1\right)=1\)

Do \(y\) nguyên dương \(\Rightarrow y\ge1\Rightarrow y-1\ge0\Rightarrow x-z>0\)

\(\Rightarrow\left\{{}\begin{matrix}x-z=1\\y-1=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\\z=x-1\end{matrix}\right.\)

Thế vào \(x+yz=2020\)

\(\Rightarrow x+2\left(x-1\right)=2020\)

\(\Leftrightarrow3x=2022\Rightarrow x=674\Rightarrow z=673\)

Vậy \(\left(x;y;z\right)=\left(674;673;2\right)\)

9 tháng 2 2023

a) \(\left(x+y+1\right)^3=x^3+y^3+7\)

\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)

\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.

Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).

- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)

Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).

- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).

Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).

Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)

 

 

9 tháng 2 2023

b) \(y^2+2xy-8x^2-5x=2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)

\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)

\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)

\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)

\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)

\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.

Lập bảng:

6y-12x-5147-1-47
24x+6y+5471-47-1
x1\(\dfrac{-14}{9}\left(l\right)\)\(\dfrac{-14}{9}\left(l\right)\)1
y3\(\dfrac{50}{9}\left(l\right)\)\(-\dfrac{22}{9}\left(l\right)\)-5

Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)