Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6xy+10x+9y=2
<=>2x(3y+5)+9y+15-17=0
<=>2x(3y+5)+3(3y+5)=17
<=>(2x+3)(3y+5)=17
tới đây bạn lập bảng là xong
Ta có: \(6xy+10x+9y-2=0\Leftrightarrow2x\left(3y+5\right)+9y+15-17=0\)
\(\Leftrightarrow2x\left(3y+5\right)+3\left(3y+5\right)=17\Leftrightarrow\left(2x+3\right)\left(3y+5\right)=17\)
Ta có bảng sau:
Vậy không tồn tại x, y nguyên dương thỏa mãn bài toán.
2xy + 9x - 11y = 21 \(\Leftrightarrow\) 2x(3y + 5) - 22y = 42 \(\Leftrightarrow\) (2x - 11) (2y + 9) = 57
ủng hộ nha mk trả lời đầu tiên đó!!!
2xy+9x-11y=21
2x+9x.y-11y=21
11x.(-10)y=21
*11x=21
x=21:11
x=231 (1)
*(-10)y=21
y=21.(-10)
y=-210 (2)
Từ (1)(2) suy ra :x=231 và y=-210
\(6x^2+5y^2=74\Rightarrow5y^2\le74\Rightarrow y^2< 16\Rightarrow\left|y\right|< 4\Rightarrow-4< y< 4\)(1)
e,\(5y^2⋮2\Rightarrow y^2⋮2\Rightarrow y⋮2\)(2)
Từ (1) và (2) kết hợp với y là số nguyên thì \(y\in\left\{-2;0;2\right\}\)
Thay vào đề bài thử loại y = 0 ta được 4 cặp số thỏa mãn là:
\(\left(x;y\right)\in\left\{\left(3;2\right),\left(3;-2\right),\left(-3;2\right),\left(-3;-2\right)\right\}\)
a) \(x-2xy+x=0\Leftrightarrow2x-2xy=0\)
\(\Leftrightarrow2x\left(1-y\right)=0\Leftrightarrow\hept{\begin{cases}2x=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
a)\(\left(2x+3\right)\left(3y+5\right)=17\)
b) \(\left(2y+9\right)\left(11-2x\right)=57\)
c) \(\left(3x-5\right)\left(3y-2\right)=31\)
Lần lượt xét từng trường hợp cho mỗi câu .