K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2020

Ta có: 

<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi><mo>=</mo><mfrac><msup><mi>a</mi><mn>3</mn></msup><mrow><mn>2016</mn><mi>a</mi><mo>+</mo><mn>2017</mn><mi>b</mi></mrow></mfrac><mo>+</mo><mfrac><msup><mi>b</mi><mn>3</mn></msup><mrow><mn>2016</mn><mi>b</mi><mo>+</mo><mn>2017</mn><mi>a</mi></mrow></mfrac><mspace linebreak="newline"/><mo>=</mo><mfrac><msup><mi>a</mi><mn>4</mn></msup><mrow><mn>2016</mn><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><mn>2017</mn><mi>a</mi><mi>b</mi></mrow></mfrac><mo>+</mo><mfrac><msup><mi>b</mi><mn>4</mn></msup><mrow><mn>2016</mn><msup><mi>b</mi><mn>2</mn></msup><mo>+</mo><mn>2017</mn><mi>a</mi><mi>b</mi></mrow></mfrac><mspace linebreak="newline"/><mo>&#x2265;</mo><mfrac><msup><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mn>2</mn></msup><mrow><mn>2016</mn><mfenced><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow></mfenced><mo>+</mo><mn>2</mn><mo>.</mo><mn>2017</mn><mi>a</mi><mi>b</mi></mrow></mfrac><mo>&#x2265;</mo><mfrac><mn>4</mn><mrow><mn>2016</mn><mo>.</mo><mn>3</mn><mo>+</mo><mn>2</mn><mo>.</mo><mn>2017</mn><mo>.</mo><mstyle displaystyle="true"><mfrac><mrow><msup><mi>a</mi><mn>2</mn></msup><mo>+</mo><msup><mi>b</mi><mn>2</mn></msup></mrow><mn>2</mn></mfrac></mstyle></mrow></mfrac><mo>=</mo><mfrac><mn>2</mn><mn>4033</mn></mfrac><mspace linebreak="newline"/><mo>&quot;</mo><mo>=</mo><mo>&quot;</mo><mo>&#x21D4;</mo><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>1</mn><mspace linebreak="newline"/><mi>V</mi><mi>&#x1EAD;</mi><mi>y</mi><mo>&#xA0;</mo><mi>M</mi><mi>i</mi><mi>n</mi><mi>M</mi><mo>=</mo><mfrac><mn>2</mn><mn>4033</mn></mfrac><mo>&#x21D4;</mo><mi>a</mi><mo>=</mo><mi>b</mi><mo>=</mo><mn>1</mn></math>

1 tháng 8 2020

xin lỗi, gửi nhầm câu trả lời ạ...

2 tháng 11 2021

\(1,\)

\(\left(x+2\right)^2\ge0;\left(y-4\right)^2\ge0;\left(2y-4\right)^2\ge0\\ \Leftrightarrow\left(x+2\right)^2+\left(y-4\right)^2+\left(2y-4\right)^2\ge0\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=4\\y=2\end{matrix}\right.\left(vô.lí\right)\)

Do đó PT vô nghiệm

\(2,\Leftrightarrow x^2-2x-3=0\Leftrightarrow x^2+x-3x-3=0\\ \Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

 

13 tháng 1 2019

Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)

Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)

13 tháng 1 2019

Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)

\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)

Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy (x;y) = (3;3)

22 tháng 12 2016

\(x^4-x^2+2x+2=\left(x+1\right)^2\left(x^2-2x+2\right)=y^2\)

\(x^2-2x+2=k^2\)

\(\left(x-1\right)^2+1=k^2\Leftrightarrow k^2-\left(x-1\right)^2=1\)

\(\orbr{\begin{cases}k=1\\x-1=0\Rightarrow x=1\end{cases}}\)

\(y^2=4\Rightarrow\orbr{\begin{cases}y=2\\y=-2\end{cases}}\)

7 tháng 8 2019

\(x^2-y^2-x+3y-4=0\)

\(\Rightarrow\left(x-0,5\right)^2-\left(y-1,5\right)^2-2=0\)

\(\Rightarrow\left(x+y-2\right)\left(x-y+1\right)=2\)

\(\Rightarrow th1:\hept{\begin{cases}x+y-2=1\\x-y+1=2\end{cases}\Rightarrow2x=4\Rightarrow x=2\Rightarrow y=1}\)

Làm nốt các trường hợp còn lại

5 tháng 8 2016

Từ giả thiết , ta có (x - 2)2 và (y - 3) là các ước nguyên của -4 ,tức thuộc tập {-4;-2;-1;1;2;4} 

mà (x - 2)2 là số chính phương,không âm

=> (x - 2)2 = 1 thì y - 3 = -4

     (x - 2)2 = 4 thì y - 3 = -1

=> x - 2 = -1 ; 1 hay    x = 1 ; 3 thì y = -1

     x - 2 = -2 ; 2 hay    x = 0 ; 4 thì y = 2 

Vậy (x ; y) = (1 ; -1) ; (3 ; -1) ; (0 ; 2) ; (4 ; 2)

5 tháng 8 2016

Vì x,y nguyên=>(x-2)2, (y-3) nguyên =>(x-2)2,(y-3) thuộc ước của -4

=>(x-2)2,(9y-3) thuộc {-4;4;-2;2} 

Vì (x-2) lớn hơn hoặc bằng 0 => (x-2)2=2;4

.................BẠN TỰ GIẢI NỐT NHA!

12 tháng 2 2018

Bài 1:

                    \(x^2-8x+y^2+6y+25=0\)

\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)

Vậy...

Bài 2: 

Phương trình có nghiệm duy nhất là    x = -2/3    nên ta có:

          \(\left(4+a\right).\frac{-2}{3}=a-2\)

\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)

\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)

\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)

\(\Leftrightarrow\)\(a=-\frac{2}{5}\)

27 tháng 2 2018

Bài 3:

\(A=a^4-2a^3+3a^2-4a+5\)

\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)

\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)

\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)

\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)

\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)

Bài 4:

\(xy-3x+2y=13\)

\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)

\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)

x+2-7-117
y-3-1-771
x-9-3-15
y2-4104

Vậy...

Bài 5:

\(xy-x-3y=2\)

\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)

x-3-5-115
y-1-1-551
x-2248
y0-462

Vậy....

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)