Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,xy+3x-y=6
(xy+3x)-(y+3)=3 0,5
x(y+3)-(y+3) =3
(x-1)(y+3)=3=3.1=-3.(-1) 0,5
Có 4 trường hợp xảy ra :
; ; ;
Từ đó ta tìm được 4 cặp số x; y thoả mãn là :
(x=4;y=-2) ; (x=2;y=0) ; (x=-2;y=-4) ; (x=0; y=-6) 1.0
phần a khó quá
câu b
x+y=xy
x+y-xy=0
x(1-y)+y-1=-1
(y-1)(1-x)=-1=-1*1=1*-1
thay vào rồi tính thôi bn
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
\(x-xy+y=6\Leftrightarrow x\left(1-y\right)=6-y\Leftrightarrow x=\frac{6-y}{1-y}\)(1)
Để x nhận giá trị nguyên thì \(6-y⋮1-y\). Mà \(1-y⋮1-y\)
Suy ra \(6-y-\left(1-y\right)⋮1-y\Rightarrow5⋮1-y\). Lại có 1-y thuộc Z
Nên \(1-y\in\left\{1;5;-1;-5\right\}\Rightarrow y\in\left\{0;-4;2;6\right\}\)
Thay các giá trị của y vào (1), ta có: \(y=0\Rightarrow x=6\)\(;\) \(y=-4\Rightarrow x=2\)
\(y=2\Rightarrow x=-4;y=6\Rightarrow x=0\)
Vậy \(\left(x;y\right)\in\left\{\left(6;0\right);\left(2;-4\right);\left(-4;2\right);\left(0;6\right)\right\}.\)
d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath
a Ta có
xy -x-y=-1
=> x(y-1)-(y-1)=0
=> (y-1)(x-1)=0
=> + y-1 =0 và x-1 thỏa mãn với mọi số nguyên
+ x-1=0 và y-1 thỏa mãn với mọi số nguyên
(x+1)(x+y+1)=6
=> x+1 ; x+y+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
Vậy ...
xy=11 nhé bạn