K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2020

Ta có \(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{y+z+x+z+x+y-2-3+5}\)

                                                                                                            \(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

=> x + y + z = 1/2

Lại có \(\hept{\begin{cases}\frac{x}{y+z-2}=\frac{1}{2}\\\frac{y}{z+x-3}=\frac{1}{2}\\\frac{z}{x+y+5}=\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2x=y+z-2\\2y=x+z-3\\2z=x+y+5\end{cases}}\Rightarrow\hept{\begin{cases}3x=x+y+z-2\\3y=x+y+z-3\\3z=x+y+z+5\end{cases}}\Rightarrow\hept{\begin{cases}3x=-\frac{3}{2}\\3y=-\frac{5}{2}\\3z=\frac{11}{2}\end{cases}}\)

=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{5}{6}\\z=\frac{11}{6}\end{cases}}\)

3 tháng 10 2020

Dễ thấy nếu x=0 thì y=z=0=>x=y=z=0 là 1 bộ giá trị phải tìm.

giả sử x,y,z khác 0 thì theo đề bài \(x+y+z\ne0\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

Thay kết quả vào dãy tỉ số ban đầu, ta được: \(x=\frac{-1}{2};y=\frac{-5}{6};z=\frac{11}{6}\)

Vậy ta có x=y=z =0 hoặc \(x=\frac{-1}{2};y=\frac{-5}{6};z=\frac{11}{6}\)

18 tháng 7 2018

Đầu bài: 1/x + 1/y + 1/z = 2 (1) 
Không mất tính tổng quát, giả sử x ≥ y ≥ z > 0 và x, y, z thuộc Z ta có: 
1/x + 1/y + 1/z ≤ 1/z + 1/z + 1/z = 3/z 
=> 2 ≤ 3/z => z ≤ 3/2 => z =1 (Vì z nguyên) 
Thay z = 1 vào (1) ta có 1/x + 1/y + 1 = 2 nên 1/x + 1/ y = 1 (2) 
Cũng do x ≥ y ≥ z > 0 nên ta có 1/x + 1/y ≤ 1/y + 1/y = 2/y 
=> 1 ≤ 2/y hay y ≤ 2 mà y ≥ z nên y = 2(Vì y nguyên) 
Với y = 2 thay vào (2) ta có x = 2 
Vậy (x, y, z) = (2, 2, 1) và các hoán vị của nó!

18 tháng 7 2018

 1/x + 1/y + 1/z = 2 (1) 
Không mất tính tổng quát, giả sử x ≥ y ≥ z > 0 và x, y, z thuộc Z ta có: 
1/x + 1/y + 1/z ≤ 1/z + 1/z + 1/z = 3/z 
=> 2 ≤ 3/z => z ≤ 3/2 => z =1 (Vì z nguyên) 
Thay z = 1 vào (1) ta có 1/x + 1/y + 1 = 2 nên 1/x + 1/ y = 1 (2) 
Cũng do x ≥ y ≥ z > 0 nên ta có 1/x + 1/y ≤ 1/y + 1/y = 2/y 
=> 1 ≤ 2/y hay y ≤ 2 mà y ≥ z nên y = 2(Vì y nguyên) 
Với y = 2 thay vào (2) ta có x = 2 
Vậy (x, y, z) = (2, 2, 1) và các hoán vị của nó!

28 tháng 8 2016

Ta có :

\(\frac{10}{7}< \frac{14}{7}=2\Rightarrow x< 2\)

Mà \(x\in N\)

TH1 : \(x=0;\)ta có :

\(\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)

\(\Rightarrow y+\frac{1}{z}=\frac{7}{10}\)

Mà \(\frac{7}{10}< 1\)

\(\Rightarrow y< 1\)

Mà \(y\in N\)

\(\Rightarrow y=0\)

\(\Rightarrow\frac{1}{z}=\frac{7}{10}\)

\(\Rightarrow z=\frac{10}{7}\)

Mà \(\frac{10}{7}\notin N\)

Do đó loại trường hợp này.

TH2 : \(x=1;\)ta có :

\(1+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)

\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{10}{7}-1\)

\(\Rightarrow\frac{1}{y+\frac{1}{z}}=\frac{3}{7}\)

\(\Rightarrow y+\frac{1}{z}=\frac{3}{7}\)

Mà \(\frac{3}{7}< 1\)

\(\Rightarrow y< 1\)

Mà \(y\in N\)

\(\Rightarrow y=0\)

\(\Rightarrow\frac{1}{z}=\frac{3}{7}\)

\(\Rightarrow z=\frac{7}{3}\)

Mà \(\frac{7}{3}\notin N\)

Do đó không có x ;y ; z thỏa mãn đề bài .
 

12 tháng 11 2016

a)2(x+y)=2(z+x)

=>\(x+y=z+x\)

=>y=z

=>\(\frac{y-z}{5}=\frac{0}{5}=0\)

 

5(y+z)=2(z+x)

5y+5z=2z+2x

mà y=z(cmt)

nên 5y+5y-2y=2x

8y=2x

x=4y

=>\(\frac{x-y}{4}=\frac{4y-y}{4}=\frac{3y}{4}\)

=>ko thỏa mãn đề bài

 

13 tháng 11 2016

a ) Cho 2( x + y ) = 5( y + z ) = 3( z + x ) thì xy4=yz5

Theo đề bài ra ta có: \(2\left(x+y\right)=5\left(y+z\right)\Rightarrow\frac{x+y}{5}=\frac{y+z}{2}\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}\)

\(5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{z+x}{5}=\frac{y+z}{3}\Rightarrow\frac{z+x}{10}=\frac{y+z}{6}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-y-z-z-x}{15-6-10}=\frac{0}{-1}=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x+y=0\\y+z=0\\z+x=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\y=0\\z=0\end{array}\right.\)

\(\Rightarrow5x-5y=4y-4z\)(Do x,y,z=0)

\(\Rightarrow5\left(x-y\right)=4\left(y-z\right)\)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)

 

 

 

18 tháng 12 2016

M = x+y/z + x+z/y + y+z/x

M = x+y+z/z + x+y+z/y + x+y+z/x - z/z - y/y - x/x

M = (x+y+z).(1/z + 1/y + 1/x) - 1 - 1 - 1

M = 2020.1/202 - 3

M = 10 - 3 = 7

18 tháng 12 2016

đg cần

9 tháng 6 2016

\(1-\frac{1}{2+\frac{1}{3}}=1-\frac{1}{\frac{7}{3}}=1-\frac{3}{7}=\frac{4}{7}=\frac{1}{\frac{7}{4}}=\frac{1}{1+\frac{3}{4}}=\frac{1}{1+\frac{1}{\frac{4}{3}}}=\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)

Vậy, x = 1; y = 1; z = 3