Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có :2xy-6=4x-y => 2xy-6-4x+y=0 => 2*(2xy-6-4x+y)=2*0 =>4xy-12-8x+2y=0 => 2x2y-4-8-8x+2y=0 => 2x2y-4-8x+2y=8 =>(2x2y+2y)-(8x+4)=8 =>2y(2x+1)-4(2x+1)=8 => (2y-4)(2x+1)=8 Ta có bảng sau :
2y-4 | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
2x+1 | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
y(yϵ\(ℤ\)) | 5/2(loại ) | 6(thỏa mãn) | 3(loại) | 4(loại) | 3/2( loại) | -2(thỏa mãn) | 1( loại) | 0(loại ) |
x(xϵ\(ℤ\)) | 7/2(loại) | 0(thỏa mãn) | 3/2( loại) | 1/2( loại) | -9/2( loại) | -1(thỏa mãn) | -5/2( loại) | -3/2( loại) |
Vậy các cặp nghiệm x,y thỏa mãn là (0;6) và (-1;-2)
x2+2xy+y2=9
=>(x2+xy)+(xy+y2)=9
=>x(x+y)+y(x+y)=9
=>(x+y)(x+y)=3.3
=>x+y=3
x2-2xy+y2=1
=>(x2-xy)+(y2-xy)=1
=>x(x-y)+y(y-x)=1
=>x(x-y)-y(x-y)=1
=>(x-y)(x-y)=1.1
=>x-y=1
x+y+x-y=3+1
=>2x=4
=>x=2
=>y=2-1
=>y=1
vậy x=2 và y=1
a) \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)
b) mk chỉnh lại đề
\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
c) \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)
d) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
a) \(\frac{x^2+x+3}{x+1}=\frac{x\left(x+1\right)+3}{x+1}=x+\frac{3}{x+1}\)
x là số nguyên nên để \(\frac{x^2+x+3}{x+1}\) nguyên thì \(\frac{3}{x+1}\) nguyên => 3 chia hết cho x+ 1
=> x +1 \(\in\)Ư(3) = {-3;-1;1;3}
+) x+ 1 = -3 => x = -4
+) x+ 1= -1 => x = -2
+) x+ 1 = 1 => x = 0
+) x + 1 = 3 => x = 2
Vậy...
b) x + 2xy + y = 0
=> x(1 + 2y) = -y . Vì y nguyên nên 1 + 2y khác 0 ( Do nếu 1 + 2y = 0 thì y = -1/2 không phải là số nguyên)
=> x = \(\frac{-y}{2y+1}\)
Để x nguyên thì y phải chia hết cho 2y + 1
=> 2y chia hết cho 2y + 1
Mà 2y + 1 luôn chia hết cho 2y + 1 nên hiệu (2y + 1) - 2y chia hết cho 2y + 1
=> 1 chia hết cho 2y + 1 => 2y + 1 \(\in\)Ư(1) = {-1;1}
+) Nếu 2y + 1 = 1 => y = 0
+) Nếu 2y + 1 = -1 => y = -1
Thử lại: y = 0 => x = 0 ( Chọn)
y = -1 => x = -1 ( Chọn)
Vậy (x;y) = (0;0) hoặc (-1;-1)
A = x^3 + 2xy(y + 1) + y^3 + x^2 + y^2 + xy + 9
= (x^3 + y^3) + 2xy(x + y) + 2xy + (x^2 - xy + y^2) + 9
= (x + y)(x^2 - xy + y^2) + 2xy(x + y + 1) + (x^2 - xy + y^2) + 9
= (x + y + 1)(x^2 - xy + y^2) + 2xy(x + y + 1) + 9
có x + y + 1 = 0
=> A = 0 + 0 + 9
A = 9
a, Tìm số nguyên a để \(\frac{a^2+a+3}{a+1}\)là số nguyên.
b, Tìm số nguyên x,y sao cho \(x-2xy+y=0\)
a, \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=1+\frac{3}{a+1}\)
Để \(\frac{a^2+a+3}{a+1}\inℤ\) thì \(a+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta có bảng:
a+1 | 1 | -1 | 3 | -3 |
a | 0 | -2 | 2 | -4 |
Vậy....
b, x - 2xy + y = 0
<=> 2x - 4xy + 2y = 0
<=> 2x(1 - 2y) + 2y - 1 = -1
<=> 2x(1 - 2y) - (1 - 2y) = -1
<=> (2x - 1)(1 - 2y) = -1
ta có bảng:
2x-1 | 1 | -1 |
1-2y | -1 | 1 |
x | 1 | 0 |
y | 1 | 0 |
Vậy...
c.xy2 + 2xy – 243y + x = 0 (1)
Giải:
Từ (1) ta có x= 243y/(y+1)^2
Vì x, y R+ => 243y chia hết cho (y + 1)^2
Mà (y; y + 1) = 1, nên => 243 chia hết cho (y + 1)^2
Mà 243 = 3^5 => 243 chia hết cho 3^2 , 9^2 và 1^2 (Vì (y + 1)^2 > 1^2)
=> (y + 1)^2 = 3^2 => y = 2 => x = 54.
Hoặc (y + 1)^2 = 9^2 => y = 8 => x = 24.
Vậy nghiệm nguyên of PT là (54;2); (24;8).
a. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath
y² + 2(x² + 1) = 2xy - 2y
<=> 2y² + 4(x² + 1) = 4xy - 4y
<=> 2y² + 4x² + 4 - 4xy + 4y = 0
<=> (4x² - 4xy + y²) + (y² + 4y + 4) = 0
<=> [(2x)² - 2.2x.y + y²] + (y² + 2.y.2 + 4) = 0
<=> (2x - y)² + (y + 2)² = 0
(2x - y)² ≥ 0
(y + 2)² ≥ 0
=> (2x - y)² + (y + 2)² ≥ 0
Dấu "=" khi (2x - y)² = 0 và (y + 2)² = 0
<=> 2x - y = 0 và y + 2 = 0
<=> 2x = y và y = - 2
<=> x = - 1 và y = - 2
Để thỏa mãn phương trình thì dấu "=" xảy ra
Vậy phương trình có nghiệm x = - 1 và y = - 2
dang tuan anh giải sai kìa,copy trên mạng đúng ko?