Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{x}{6}-\frac{7}{y}=\frac{1}{12}\)(y khác 0)
=> \(\frac{xy-42}{6y}=\frac{1}{12}\)
=> 12(xy - 42) = 6y
=> 12xy - 504 = 6y
=> 12xy - 6y = 504
=> 2xy - y = 84
=> y(2x - 1) = 84
Ta có 84 = 1.84 = (-1).(-84) = 42.2 = (-42).(-2) = 21.4 = (-21).(-4) = 7.12 = (-7).(-12) = (-3).(-28) = 28.3 = 14.6 = (-14).(-6)
Lập bảng xét 24 trường hợp
y | 1 | 84 | 42 | 2 | 21 | 4 | 3 | 28 | 6 | 14 | 7 | 12 | -1 | -2 | -3 | -4 | -6 | -7 | -12 | -14 | -21 | -28 | -42 | -84 |
2x - 1 | 84 | 1 | 2 | 42 | 4 | 21 | 28 | 3 | 14 | 6 | 12 | 7 | -84 | -42 | -28 | -21 | -14 | -12 | -7 | -6 | -4 | -3 | -2 | -1 |
x | 42,5 | 1 | 1,5 | 21,5 | 2,5 | 11 | 14,5 | 2 | 7,5 | 3,5 | 6,5 | 4 | -41,5 | -20,5 | -13,5 | -10 | -6,5 | -5,5 | -3 | -2,5 | -1,5 | -1 | -0,5 | 0 |
Vậy các cặp (y;x) thỏa mãn là : (84;1) ; (4 ; 11) ; (12 ; 4) ; (28 ; 2) ; (-4 ; - 10) ; (-12 ; -3) ; (-28 ; -1) ; (-84 ; 0)
xy + 2x - 3y = 9
\(\Leftrightarrow\) 2x + xy - 3y - 6 = 3
\(\Leftrightarrow\) x(2 + y) - 3(y + 2) = 3
\(\Leftrightarrow\) (2 + y)(x - 3) = 3
Vì x, y \(\in\) Z nên (2 + y)(x - 3) \(\in\) Z. Ta có bảng sau:
x - 3 | 3 | 1 | -1 | -3 |
2 + y | 1 | 3 | -3 | -1 |
x | 6(TM) | 4(TM) | 2(TM) | 0(TM) |
y | -1(TM) | 1(TM) | -5(TM) | -3(TM) |
Vậy phương trình có nghiệm (x; y) = {(6; 1); (4; 1); (2; -5); (0; -3)}
Chúc bn học tốt!
a, Xét \(\dfrac{x}{-5}=2\Rightarrow x=-10\)
\(\dfrac{y}{4}=2\Leftrightarrow y=8\)
b, \(xy=6\Rightarrow x;y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
\(\frac{x}{3}+\frac{y}{5}=\frac{x+y}{3+5}\)
\(\frac{x}{3}+\frac{y}{5}=\frac{x}{8}+\frac{y}{8}\)
\(\Rightarrow\frac{x}{3}=\frac{x}{8};\frac{y}{5}=\frac{y}{8}\Rightarrow x=0;y=0\)
Trả lời:
\(x^3y=xy^3+1997\)
\(\Leftrightarrow x^3y-xy^3=1997\)
\(\Leftrightarrow xy.\left(x^2-y^2\right)=1997\)
\(\Leftrightarrow xy.\left(x-y\right).\left(x+y\right)=1997\)
Ta có: \(1997\)là số nguyên tố, \(xy.\left(x-y\right).\left(x+y\right)\)là hợp sô
\(\Rightarrow\left(x,y\right)\in\varnothing\)
Vậy không tìm được x và y thỏa mãn đề bài
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{2x^2}{18}=\dfrac{y^2}{36}=\dfrac{2x^2-y^2}{18-36}=\dfrac{-8}{-18}=\dfrac{4}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4.3}{9}=\dfrac{4}{3}\\y=\dfrac{4.6}{9}=\dfrac{8}{3}\end{matrix}\right.\)
Bạn đúng 1 phần, vì đây là 2x2 và y2 nên nó sẽ có 2 trường hợp!
\(\dfrac{x}{3}\)=\(\dfrac{y}{6}\)=\(\dfrac{2x^2}{18}\)=\(\dfrac{y^2}{36}\)=\(\dfrac{2x^2-y^2}{18-36}\)=\(\dfrac{-8}{-18}\) =\(\dfrac{4}{9}\)
=>TH1: \(\dfrac{4}{9}\) ⇒\(\left\{{}\begin{matrix}\dfrac{4}{3}\\\dfrac{8}{3}\end{matrix}\right.\)
=>TH2: \(\dfrac{-4}{9}\)⇒\(\left\{{}\begin{matrix}\dfrac{-4}{3}\\\dfrac{-8}{3}\end{matrix}\right.\)
a;\(\frac{x}{-3}=\frac{4}{y}\)
\(\Rightarrow xy=-12\)
\(\Rightarrow x;y\inƯ\left(-12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Xét bảng
x | 1 | -1 | 2 | -2 | 3 | -3 | 12 | -12 | 6 | -6 | 4 | -4 |
y | -12 | 12 | -6 | 6 | -4 | 4 | -1 | 1 | -2 | 2 | -3 | 3 |
Vậy.................................................
b,\(\frac{2}{x}=\frac{y}{-9}\)
\(\Rightarrow xy=-18\)
\(\Rightarrow x;y\inƯ\left(-18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)
Xét bảng
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 | 9 | -9 | 18 | -18 |
y | -18 | 18 | -9 | 9 | -6 | 6 | -3 | 3 | -2 | 2 | -1 | 1 |
Vậy...................................
c;\(\frac{x}{3}=\frac{y}{7}\)
\(\Rightarrow xy=21\)
\(\Rightarrow x;y\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Xét bảng
x | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
y | 21 | -21 | 7 | -7 | 3 | -3 | 1 | -1 |
Vậy..........................