Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
a) Ta có: \(\frac{x}{12}=\frac{y}{3}.\)
=> \(\frac{x}{12}=\frac{y}{3}\) và \(x-y=36.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4.\)
\(\left\{{}\begin{matrix}\frac{x}{12}=4=>x=4.12=48\\\frac{y}{3}=4=>y=4.3=12\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(48;12\right).\)
b)
\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)
⇒ \(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)
⇒ \(\frac{5}{3}x=\frac{1}{21}\)
⇒ \(x=\frac{1}{21}:\frac{5}{3}\)
⇒ \(x=\frac{1}{35}\)
Vậy \(x=\frac{1}{35}.\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
⇒ \(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
⇒ \(x-\frac{1}{2}=\frac{1}{3}\)
⇒ \(x=\frac{1}{3}+\frac{1}{2}\)
⇒ \(x=\frac{5}{6}\)
Vậy \(x=\frac{5}{6}.\)
Có 1 câu bạn đăng mình làm ở dưới rồi mà.
Chúc bạn học tốt!
a)áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4\)
\(\)x/12=4 suy ra x=12.4=48
y/3=4 suy ra y=3.4 =12
b)\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)
\(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)
\(\frac{5}{3}x=\frac{1}{21}\)
\(x=\frac{1}{21}:\frac{5}{3}\)
\(x=\frac{1}{35}\)
\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{2}{5}\)
\(x=\frac{-3}{20}\)
\(\left|x-\frac{2}{5}\right|+\frac{3}{4}=\frac{11}{4}\)
\(\left|x-\frac{2}{5}\right|=\frac{11}{4}-\frac{3}{4}\)
\(\left|x-\frac{2}{5}\right|=2\)
suy ra x-2/5=2 hoac x-2/5=-2
\(x-\frac{2}{5}=2\)
\(x=\frac{12}{5}\)
\(x-\frac{2}{5}=-2\)
\(x=\frac{-8}{5}\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}\)
\(x=\frac{5}{6}\)
Tớ làm lần lượt nhé.
Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta được:
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)
\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)
\(\frac{y-2}{4}=1\Rightarrow y=6\)
\(\frac{z-3}{5}=1\Rightarrow z=3\)
\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)
\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)
\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)
\(\Rightarrow x=7\cdot\frac{200}{35}=40\)
\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)
P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.
a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)
=> \(2\cdot4=5\left(x-3\right)\)
=> \(8=5x-15\)
=> \(5x-15=8\)
=> \(5x=23\)=> x = 23/5 (tm)
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
=> 3(x + 1) = 5(4x - 2)
=> 3x + 3 = 20x - 10
=> 3x + 3 - 20x + 10 = 0
=> 3x - 20x + 3 + 10 = 0
=> 3x - 20x = -13
=> -17x = -13
=> x = 13/17(tm)
2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)
b) Bạn tự làm
c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)
=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)
d) Đặt x/3 = y/4 = k
=> x = 3k, y = 4k
Theo đề bài ta có => xy = 3k.4k = 12k2
=> 48 = 12k2
=> k2 = 48 : 12 = 4
=> k = 2 hoặc k = -2
Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8
Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8
Bài 1.
a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )
<=> 2.4 = ( x - 3 ).5
<=> 8 = 5x - 15
<=> 8 + 15 = 5x
<=> 23 = 5x
<=> 23/5 = x ( tmđk )
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
<=> ( x + 1 ).3 = 5( 4x - 2 )
<=> 3x + 3 = 20x - 10
<=> 3x - 20x = -10 - 3
<=> -17x = -13
<=> x = 13/17
Bài 2.
a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
xy = 48
<=> 3k.4k= 48
<=> 12k2 = 48
<=> k2 = 4
<=> k = ±2
+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)
+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)
1) \(\frac{x+4}{7+y}=\frac{4}{7}\)\(\Rightarrow7\left(x+4\right)=4\left(7+y\right)\)
\(\Rightarrow7x+28=28+4y\)
\(\Rightarrow7x=4y\)
\(\Rightarrow\frac{x}{4}=\frac{y}{7}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)
x/4 = 2 => x = 4 x 2 = 8
y/7 = 2 => y = 2 x 7 = 14
1 Ta có x -24 = y
Suy ra x - y = 24
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/7 = y/3 = x-y/7-3 =24/4=6
suy ra x= 42
y = 18
Ta có : \(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+1+7y}{12+4x}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}\)
=> \(\frac{1+5y}{5x}=\frac{1+5y}{6+2x}\)
=> 5x = 6 + 2x
=> 3x = 6
=> x = 2
Khi đó \(\frac{1+3y}{12}=\frac{1+5y}{10}=\frac{1+7y}{8}\)
=> \(\hept{\begin{cases}\frac{1+3y}{12}=\frac{1+5y}{10}\\\frac{1+5y}{10}=\frac{1+7y}{8}\end{cases}}\Rightarrow\hept{\begin{cases}10\left(1+3y\right)=12\left(1+5y\right)\\8\left(1+5y\right)=10\left(1+7y\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}10+30y=12+60y\\8+40y=10+70y\end{cases}}\Rightarrow\hept{\begin{cases}30y=-2\\30y=-2\end{cases}}\Rightarrow\hept{\begin{cases}y=-\frac{1}{15}\\y=-\frac{1}{15}\end{cases}}\Rightarrow y=-\frac{1}{15}\)
Vậy x = 2 ; y = -1/15 là giá trị cần tìm