\(9x^2+8y^2-12xy+6x-16y+10=0\)  0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

lên mạng mà xem

2 tháng 8 2017

Kh có bạn ah 

26 tháng 7 2017

Ta có: \(9x^2+8y^2-12xy+6x-16y+10=0\)

\(\Rightarrow9x^2+8y^2-12xy+6x-16y=-10\)

\(=9x^2+2\left(4y^2-6xy+3x-8y\right)=-10\)

\(=9x^2+2\left[3x-6xy+4y\left(y-2\right)\right]\)

\(=9x^2+2\left[3x\left(1-2y\right)+4y\left(y-2\right)\right]\)

\(\Rightarrow\left\{{}\begin{matrix}9x^2=0\\\left\{{}\begin{matrix}1-2y=0\\y-2=0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}y=\dfrac{1}{2}\\y=2\end{matrix}\right.\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=0\\\left\{{}\begin{matrix}y=\dfrac{1}{2}\\y=2\end{matrix}\right.\end{matrix}\right.\)

23 tháng 6 2017

Bài này giải rồi mà

23 tháng 6 2017

a)

\(5x^2+9y^2-12xy-6x+9=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(2x-3y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)nên

\(\Rightarrow\hept{\begin{cases}\left(2x-3y\right)^2=0\\\left(x-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\x-3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

Vậy x=3 và y=2

23 tháng 6 2017

b)

\(2x^2+2y^2+2xy-10x-8y+41=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)\(\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x-5\right)^2\ge0\\\left(y-4\right)^2\ge0\end{cases}}\)nên

\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-5\right)^2=0\\\left(y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x-5=0\\y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=0\\x=5\\y=4\end{cases}}}\)( VÔ nghiệm vì \(x+y\ne0\))

Vậy không có giá trị x, y nào thỏa mãn đề bài

16 tháng 7 2019

a) \(x^2+2xy+y^2+x+y-2\le0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+x+y-2\le0\)

\(\Leftrightarrow\)\(\left(x+y+\frac{1}{2}\right)^2\le\frac{9}{4}\)

\(\Leftrightarrow\)\(-2\le x+y\le1\)

b) \(x^2+2y^2+2xy-16y-6x+30=0\)

\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)-6\left(x+y\right)=-y^2+10y-30\)

\(\Leftrightarrow\)\(\left(x+y\right)^2-6\left(x+y\right)=-\left(y^2-10y+25\right)-5\)

\(\Leftrightarrow\)\(\left(x+y-3\right)^2=-\left(y-5\right)^2+4\le4\)

\(\Leftrightarrow\)\(1\le x+y\le5\)

30 tháng 10 2016

\(5x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow4x^2+x^2+9y^2-12xy-6x+9=0\)

     \(< 2x-3y>^2+< x-3>^2=0\)

Vì \(< 2x-3y>^2>0\) và   \(< x-3>^2>0\)

nên \(< 2x-3y>^2+< x-3>^2=0\)

khi   \(2x-3y=0\)  và      \(x-3=0\)

DẤU < > Là Dấu ngoặc đon nha

30 tháng 10 2016

5x+ 9y2 - 12xy - 6x + 9 = 0

(2x-3y)2 + (x-3)2 = 0

(2x-3y-x+3)(2x-3y+x-3) = 0

(x-3y+3)(3x-3y-3) = 0

đến đây mik chịu

21 tháng 7 2021

Trả lời:

Ta có: ( x - 2y )3 = x3 - 3.x2.2y + 3.x.( 2y )2 - ( 2y )3 = x3 - 6x2y + 12xy2 - 8y3 ( HĐT thứ 5 - lập phương của 1 hiệu )

=> Chọn b

21 tháng 7 2021

chọn đáp án đúng và giải thick ra nhé

12 tháng 8 2018

      \(5x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow\left(4x^2+9y^2-12xy\right)+\left(x^2-6x+9\right)=0\)

\(\Rightarrow\left(2x-3y\right)^2+\left(x-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}2x-3y=0\\x-3=0\end{cases}\Rightarrow\hept{\begin{cases}2x=3y\\x=3\end{cases}\Rightarrow}\hept{\begin{cases}y=2\\x=3\end{cases}}}\)

12 tháng 8 2018

\(5x^2+9y^2-12xy-6x+9=0\)

<=>  \(\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

<=>  \(\left(2x-3y\right)^2+\left(x-3\right)^2=0\)

<=>  \(\hept{\begin{cases}2x-3y=0\\x-3=0\end{cases}}\)

<=>  \(\hept{\begin{cases}y=2\\x=3\end{cases}}\)

Vậy...