Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+4y^2-6x-4y+10=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)
b) \(2x^2+y^2+2xy-10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)
c) \(x^2+2xy+4x-4y-2xy+5=0\)
\(\Leftrightarrow x^2-4x-4y+5=0\)
Xem lại đề câu c).
a) x2 + 4y2 - 6x - 4y + 10 = 0
<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0
<=> ( x - 3 )2 + ( 4y - 1 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)
b) 2x2 + y2 + 2xy - 10x + 25 = 0
<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0
<=> ( x + y )2 + ( x - 5 )2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)
c) Xem lại đề
A=x 2−2x+2
=x2-2x+1+1
=(x2-2x+1)+1
=(x-1)2+1
vì (x-1)2\(\ge0\forall x\)
=>(x-1)2+1\(\ge1\)
vậy A luôn dương với mọi x
B=x2+y2+2x−4y+6
=x2+2x+1+y2-4y+4+1
=(x2+2x+1)+(y2-4y+4)+1
=(x+1)2+(y-2)2+1
do (x+1)2\(\ge0\forall x\)
(y-2)2\(\ge0\forall y\)
=>(x+1)2+(y-2)2\(\ge0\)
=>(x+1)2+(y-2)2+1\(\ge1\)
=>B\(\ge1\)
vậy B luôn dương với mọi x;y
C= x2+y2+z2+4x−2y−4z+10
=x2+4x+4+y2-2y+1+z2-4z+4+1
=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1
=(x+2)2+(y-1)2+(z-2)2+1
do (x+2)2\(\ge0\forall x\)
(y-1)2\(\ge0\forall y\)
(\(\)z-2)2\(\ge0\forall z\)
=>(x+2)2+(y-1)2+(z-2)2\(\ge0\)
=>(x+2)2+(y-1)2+(z-2)2+1\(\ge1\)
=>C\(\ge1\)
vậy C luôn dương với mọi x;y;z
bài 2: tìm x
a)\(x^2+y^2-2x+4y+5=0\)
\(\Leftrightarrow x^2+y^2-2x+4y+1+4=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy x=1; y=-2
b)\(5x^2+9y^2-12xy-6x+9=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2.3-3.y=0\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
Vậy x=2; y=3
áp dụng tam bậc thức
đa thức cao hơn 2
biểu thức là 1 phân thức
có thể lm bài đc đó
áp dụng tam bậc thức
đa thức cao hơn 2
biểu thức là 1 phân thức
có thể lm bài đc đó
a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)
Với mọi x, y ta có :
\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)
\(\Leftrightarrow pt\) vô nghiệm
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
Ta có hệ phương trình :
\(\hept{\begin{cases}x^2+7=4y^2+4y\left(1\right)\\x^2+3xy+2y^2+x+y=0\left(2\right)\end{cases}}\)
Từ (2) \(\Leftrightarrow x^2+xy+2xy+2y^2+x+y=0\)
\(\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)
*) Với \(x=-y\) thì từ (1) suy ra :
\(\left(-y\right)^2+7=4y^2+4y\)
\(\Leftrightarrow3y^2+4y-7=0\)
\(\Leftrightarrow\left(y-1\right)\left(3y+7\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{7}{3}\end{cases}}\)
+) Khi \(y=1\Rightarrow x=-1\)
+) Khi \(y=-\frac{7}{3}\Rightarrow x=\frac{7}{3}\)
*) Với \(x=-2y-1\) thì từ (1) suy ra :
\(\left(-2y-1\right)^2+7=4y^2+4y\)
\(\Leftrightarrow4y^2+4y+1+7=4y^2+4y\)
\(\Leftrightarrow0=8\) ( Vô lí )
Vậy \(\left(x,y\right)\in\left\{\left(-1,1\right);\left(\frac{7}{3},-\frac{7}{3}\right)\right\}\)
\(x^2+4y^2-6x+4y+10=0\)
\(x^2-6x+9+\left(4y^2+4y+1\right)=0\)
\(\left(x-3\right)^2+\left(2y+1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\) vì \(0+0=0\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=\frac{-1}{2}\end{cases}}\)