K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

\(x\left(x+y\right)=\frac{1}{48}\)

\(y\left(x+y\right)=\frac{1}{24}\)

\(\Rightarrow x\left(x+y\right)+y\left(x+y\right)=\frac{1}{48}+\frac{1}{24}\)

\(\Rightarrow\left(x+y\right)^2=\frac{3}{48}\)

\(\Rightarrow\left(x+y\right)^2=\frac{1}{16}\)

\(\Rightarrow\orbr{\begin{cases}x+y=\frac{1}{4}\\x+y=-\frac{1}{4}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12};y=\frac{1}{6}\\x=-\frac{1}{12};y=-\frac{1}{6}\end{cases}}\)

Vậy ...

6 tháng 10 2016

ta có:\(x.\left(x+y\right)+y.\left(x+y\right)=\frac{1}{48}+\frac{1}{24}\)

        \(\left(x+y\right).\left(x+y\right)=\frac{1}{16}\)

        \(\left(x+y\right)^2=\left(\frac{1}{4}\right)^2\)

    \(=>\left(x+y\right)=\frac{1}{4}\)                                                                    

lại có: \(x.\left(x+y\right)-y\left(x+y\right)=\frac{1}{48}-\frac{1}{24}\)

          \(\left(x-y\right).\left(x+y\right)=-\frac{1}{48}\)

            \(\left(x-y\right).\frac{1}{4}=-\frac{1}{48}\)

            \(\left(x-y\right)=-\frac{1}{48}:\frac{1}{4}\)

             \(\left(x-y\right)=-\frac{1}{12}\)

=>\(x=\left(\frac{1}{4}+-\frac{1}{12}\right):2=\frac{1}{12}\)

\(y=\left(\frac{1}{4}-\left(\frac{-1}{12}\right)\right):2=\frac{1}{6}\)

21 tháng 9 2016

a) vì y+z+1/x = x+z+2/y = x+y-3/z = 1/x+y+z

=>

y+z+1/x = x+z+2/y = x+y-3=y+z+1+x+z+2+x+y-3/x+y+z = 2x+2y+2z/x+y+z = 2

=> 2 = 1/ x+y+z => x+y+z=1/2

sau đó áp dụng tính chất dãy tỉ số = hau

26 tháng 8 2015

\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)

x/5=10=>50

y/3=10=>30

2/ \(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{48}{12}=4\)

x/5=4=>20

y/7=4=>28

3/ \(\frac{x}{-2}=\frac{y}{5}=\frac{x+y}{-2+5}=\frac{12}{3}=4\)

x/-2=4=>-8

y/5=4=>20

26 tháng 8 2015

3.\(\frac{x}{-2}=\frac{y}{5}=\frac{x+y}{-2+5}=\frac{12}{3}=4\)                                                                                                               =>x=-2.4=-8;y=5.4=20

15 tháng 8 2017

A ) ĐK: x#0 
Ta có:  
(1) 1+2y/18 = 1+4y/24 
=> 24 + 48y = 18 + 72y 
<=> y=1/4 
(2) 1+4y/24=1+6y/6x  
Thay y=1/4 vào (2) ta tìm đc x=5 (thỏa)

B ) x+y=3(x−y)=x:y
→x+y=3x−3y
→4y=2x
→x:y=4:2=2
→x+y=2
Mà x=2y nên
2y+y=3y=2
→y=2/3
→x=2−2/3=4/3

Chú ý : dấu / nghĩa là phần

Nếu mình đúng thì các bạn k mình nhé

15 tháng 8 2017

a) \(\frac{1+2y}{18}=\frac{1+4y}{24}\Rightarrow24+48y=18+72y\Rightarrow6=24y\Rightarrow y=\frac{1}{4}\)

\(\frac{1+4y}{24}=\frac{1+6y}{6x}\Rightarrow\frac{1+4.\frac{1}{4}}{24}=\frac{1+6.\frac{1}{4}}{6x}\Rightarrow\frac{2}{24}=\frac{\frac{5}{2}}{6x}\Rightarrow12x=60\Rightarrow x=5\)

b) \(x+y=3\left(x-y\right)\Rightarrow x+y=3x-3y\Rightarrow4y=2x\Rightarrow x=2y\)

\(x+y=\frac{x}{y}\Rightarrow2y+y=\frac{2y}{y}\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\Rightarrow x=2y=\frac{4}{3}\)

\(\)

17 tháng 9 2016

Ta có: 

\(x.\left(x+y\right)+y.\left(x+y\right)=\frac{1}{48}+\frac{1}{24}\)

=> \(\left(x+y\right)^2=\frac{1}{16}\)

=> \(\left[\begin{array}{nghiempt}x+y=\frac{1}{4}\\x+y=-\frac{1}{4}\end{array}\right.\)

+ Với \(x+y=\frac{1}{4}\) => \(x=\frac{1}{48}:\frac{1}{4}=\frac{1}{12};y=\frac{1}{24}:\frac{1}{4}=\frac{1}{6}\)

+ Với \(x+y=-\frac{1}{4}\) => \(x=\frac{1}{48}:\frac{-1}{4}=-\frac{1}{12};y=\frac{1}{24}:\frac{-1}{4}=-\frac{1}{6}\)

Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: \(\left(\frac{1}{12};\frac{1}{6}\right);\left(-\frac{1}{12};-\frac{1}{6}\right)\)

18 tháng 9 2016

bạn ơi tính từ vế trai sang vế  pải mà 

 

15 tháng 12 2016

a) Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2005}=\frac{3-y}{2006}=\frac{x-1+3-y}{2005+2006}=\frac{2+x-y}{4011}=\frac{2+4009}{4011}=1\)

=> \(\begin{cases}x-1=2005\\3-y=2006\end{cases}\)\(\Leftrightarrow\begin{cases}x=2006\\y=-2003\end{cases}\)

b) Có: \(3x=y\Rightarrow\frac{x}{1}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)

\(5y=4z\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nahu ta có:

\(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}=\frac{6x+7y+8z}{6\cdot4+7\cdot12+8\cdot15}=\frac{456}{228}=2\)

=> \(\begin{cases}x=8\\y=24\\z=30\end{cases}\)

c) Có: \(x-24=y\Rightarrow x-y=24\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)

=> \(\begin{cases}x=42\\y=18\end{cases}\)

6 tháng 11 2016

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)\(x.y=48\)

Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\Leftrightarrow\frac{x^2}{3}=\frac{x.y}{4}=\frac{z.x}{7}\)

\(\frac{x^2}{3}=\frac{48}{4}=\frac{z.x}{7}\Leftrightarrow\frac{x^2}{3}=\frac{x.y}{4}=\frac{z.x}{7}=12\)

\(x=\sqrt{12.3}=6\)

\(y=\frac{12.4}{6}=8\)

\(z=\frac{12.7}{6}=14\)

Vậy: \(\hept{\begin{cases}x=6\\y=8\\z=14\end{cases}}\)

6 tháng 11 2016

xét x/3 = y/4

theo dãy tỉ số = nhau ta đc

x/3 = y/4 = xy/3.4 = xy/12 = 48/12 =  4

x=12

y=16

z=28

mik nha chế