Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biêt x, y , z thoả mãn: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x - 2y + 3z = 10. Tìm x,y,z.
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
b. Áp dụng t/c dãy tỉ số = nhau:
\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=-\frac{7}{3}\)
\(\Rightarrow\frac{x}{2}=-\frac{7}{3}\Leftrightarrow x=-\frac{7}{3}.2=-\frac{14}{3}\)
\(\Rightarrow\frac{y}{5}=-\frac{7}{3}\Leftrightarrow y=-\frac{7}{3}.5=-\frac{35}{3}\)
Vậy \(\hept{\begin{cases}x=-\frac{14}{3}\\y=-\frac{35}{3}\end{cases}}\)
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: \(xyz=192\Leftrightarrow2k.3k.4k=192\)
\(\Leftrightarrow24k^3=192\)
\(\Leftrightarrow k^3=8\)
\(\Leftrightarrow k=2\)
\(\Rightarrow x=2.2=4\)
\(y=2.3=6\)
\(z=2.4=8\)
e, Ta có: \(x=\frac{y}{2}=\frac{z}{3}=\frac{2x}{2}=\frac{3z}{9}\)
Áp dụng t/c dãy tỉ số = nhau:
\(\frac{2x}{2}=\frac{y}{2}=\frac{3z}{9}=\frac{2x-y+3z}{2-2+9}=\frac{10}{9}\)
\(\Rightarrow x=\frac{10}{9}\)
\(y=\frac{10}{9}.2=\frac{20}{9}\)
\(z=\frac{10}{9}.3=\frac{10}{3}\)
b,\(\frac{x}{2}=\frac{y}{5}=\frac{x-y}{2-5}=\frac{7}{-3}.\)
=>x= \(\frac{7}{-3}.2=-4\frac{2}{3}\)
y, \(\frac{7}{-3}.5=-11\frac{2}{3}\)
1,x/7=y/3 va x-24=y
=>x/7=y/3 va x-y=24
adtcdts=n:
x/7=y/3=x-y/7-3=24/4=6
Suy ra :x/7=6=>x=6.742
y/3=6=>y=3.6=18
2,Adtcdts=n:
x/5=y/7=z/2=y-x/7-5=48/2=24
suy ra : x/5=24=>x=120
y/7=24=>y=168
z/2=24=>z=48
a) \(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\left(\frac{x}{5}\right)^2=\left(\frac{y}{7}\right)^2=\frac{xy}{5.7}=\frac{35}{35}=1\)
\(\Rightarrow\hept{\begin{cases}\left(\frac{x}{5}\right)^2=1\Rightarrow\frac{x^2}{25}=1\Rightarrow x^2=1.25=25=5^2\\\left(\frac{y}{7}\right)^2=1\Rightarrow\frac{y^2}{49}=1\Rightarrow y^2=1.49=49=7^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\in\text{{}5;-5\\y\in\text{{}7;-7\end{cases}}\)
Vậy ...
d) (Đừng chép vội, đọc dòng cuối đi)
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}.\frac{1}{2}=\frac{y}{2}.\frac{1}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\)
\(y=4z\Rightarrow\frac{y}{4}=\frac{z}{1}\)Ngoặc "}'' 2 điều lại
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{1}=\frac{x-y+z}{6-4+1}=\frac{2}{3}\)
Không biết phần d bạn có chép sai đề không ? Chứ tính đáp án nó không phù hợp
1) 22x + 1 = 32
=> 22x + 1 = 25
=> 2x + 1 = 5
=> 2x = 5 - 1
=> 2x = 4
=> x = 2
(2) 3.x3 - 100 = 275
=> 3x3 = 275 + 100
=> 3x3 = 375
=> x3 = 375 : 3
=> x3 = 125
=> x3 = 53
=> x = 5
(4) (x - 1)3 - 25 = 72
=> (x - 1)3 = 49 + 32
=> (x - 1)3 = 81
(xem lại đề)
5) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-4}{-2}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{5}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.5=10\end{cases}}\)
Vậy ...
6) Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\) => \(\frac{y}{15}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=\frac{-49}{37}\)
=> \(\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}}\) => \(\hept{\begin{cases}x=-\frac{49}{37}\cdot10=\frac{-490}{37}\\y=-\frac{49}{37}\cdot15=-\frac{735}{37}\\z=-\frac{49}{37}\cdot12=-\frac{588}{37}\end{cases}}\)
Vậy ...
mk lm bài mà mk cho là ''khó'' nhất thôi nha
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)và \(x+y+z=-49\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
ADTC dãy tỉ số bằng nhau ta có
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=-\frac{49}{37}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{49}{37}.10=-\frac{490}{37}\\y=-\frac{49}{37}.15=-\frac{735}{37}\\z=-\frac{49}{37}.12=-\frac{588}{37}\end{cases}}}\)
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\Rightarrow x=10\\\frac{y}{3}=5\Rightarrow y=10\end{cases}}\)
Vậy x = 10, y = 10
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{8}=\frac{2x+3y}{2.7+3.8}=\frac{4}{60}=\frac{1}{12}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{1}{12}\Rightarrow x=\frac{7}{12}\\\frac{y}{8}=\frac{1}{12}\Rightarrow y=\frac{2}{3}\end{cases}}\)
Vậy ...
\(c,3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x-y}{4-3}=\frac{1}{1}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=1\Rightarrow x=4\\\frac{y}{3}=1\Rightarrow y=3\end{cases}}\)
Vậy ....
d,Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x-y}{3-4}=\frac{48}{\left(-1\right)}=\left(-48\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-48\right)\Rightarrow x=-144\\\frac{y}{4}=\left(-48\right)\Rightarrow y=-192\end{cases}}\)
Vậy ...