Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (x-3)^2 +( y+2)^2 =0
=> (x-3)^2=0 => x-3=0 =>x= 3
(y+2)^2=0 => y+2=0 =>y= -2
nhớ k cho mik nha!!!!!
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)
\(x=-3;y=6\)
b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
\(x=-52;y=-65\)
c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)
\(x=28;y=16\)
\(k=\frac{3x-4}{y+15}\)(1)
Thế x = 2 ; y = 3 vào (1) ta được : \(k=\frac{3\cdot2-4}{3+15}=\frac{2}{18}=\frac{1}{9}\)
=> k = 1/9
Khi y = 12, thế y vào (1) ta được :
\(k=\frac{3x-4}{12+15}\)
<=> \(\frac{1}{9}=\frac{3x-4}{27}\)
<=> 1.27 = 9( 3x - 4 )
<=> 27 = 27x - 36
<=> 27x = 63
<=> x = 63/27 = 7/3
Vậy khi y = 12 thì x = 7/3
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
\(\left(x-15\right)\left(y+12\right)\left(z-3\right)=0\)
=>\(\left[{}\begin{matrix}x-15=0\\y+12=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\y=-12\\z=3\end{matrix}\right.\)
TH1: x=15
x+1=y+2=z+3
=>y+2=z+3=15+1=16
=>y=16-2=14;z=16-3=13
TH2: y=-12
x+1=y+2=z+3
=>x+1=z+3=-12+2=-10
=>x=-10-1=-11; z=-10-3=-13
TH3: z=3
x+1=y+2=z+3
=>x+1=y+2=3+3=6
=>x=6-1=5; y=6-2=4
Ta có : \(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)
\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(=>\frac{x^2}{8^2}=\frac{y^2}{12^2}=\frac{z^2}{15^2}\)
Áp dụng t/c của dãy tí số bằng nhau ta có:
\(\frac{x^2}{8^2}=\frac{y^2}{12^2}=\frac{z^2}{15^2}=\frac{x^2+y^2-z^2}{8^2+12^2-15^2}=\frac{12}{-17}\)
PHẦN TIẾP TỰ LÀM NHÁ
HOK GIỎI NHA CƯNG
Bài này mình không biết làm.
Chúc bạn may mắn......mình chính là Đào Minh Tiến!
Ta thấy:
\(\hept{\begin{cases}\left(x-12+y\right)^2\ge0\\\left(y+4-x\right)^2\ge0\end{cases}}\left(x,y\in R\right)\Rightarrow\left(x-12+y\right)^2+\left(y+4-x\right)^2\ge0\)
Mà theo đầu bài \(\left(x-12+y\right)^2+\left(y+4-x\right)^2=0\Rightarrow\hept{\begin{cases}\left(x-12+y\right)^2=0\\\left(y+4-x\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x-12+y=0\\y+4-x=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+y=0+12\\y-x=0-4\end{cases}}\Rightarrow\hept{\begin{cases}y+x=12\\y-x=-4\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{12+\left(-4\right)}{2}=\frac{8}{2}=4\\x=\frac{12-\left(-4\right)}{2}=\frac{16}{2}=8\end{cases}}\)
Vậy x = 8 ; y = 4