Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x-2}=a;\sqrt{y+1}=b\) nên
\(pt\Leftrightarrow\hept{\begin{cases}3a+2b=7\\5a-3b=-1\end{cases}\Leftrightarrow\hept{\begin{cases}15a+10b=35\\15a-9b=-3\end{cases}}\Leftrightarrow\left(15a+10b\right)-\left(15a-9b\right)=38}\)
\(\Leftrightarrow19b=38\Rightarrow b=2\)\(\Leftrightarrow3a+2.2=7\Rightarrow a=1\)
\(\Rightarrow\hept{\begin{cases}a=\sqrt{x-2}=1\\b=\sqrt{y+1}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=1\\y+1=4\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}}\)
Vậy \(x=y=3\)
Đặt \(\sqrt{x-2}=a\)và\(\sqrt{y+1}=b\)
Ta có:\(\hept{\begin{cases}3a+2b=7\\5a-3b=-1\end{cases}\Leftrightarrow\hept{\begin{cases}15a+10b=70\\15a-9b=-3\end{cases}}}\)
Lấy trên trừ dươi suy ra 19b=73, thay b vao la tim ra a. Sau do khai can la tim ra x va y
ta có điều kiện sau
\(\hept{\begin{cases}x\ge0\\y\ge0\end{cases}}\)
=> \(\hept{\begin{cases}\sqrt{x+1}+\sqrt{y}\ge1\\\sqrt{y+1}+\sqrt{x}\ge1\end{cases}}\)
dấu = xảy ả <=> x=y=0
Lấy - 2(1) + 5(2) ta được
x + y = (√m) - 2 < - 1
<=> √m < 1
<=> m < 1