\(\left(x-0,2\right)^{10}+\left(y+3,1\right)^{20}=0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

a.

Ta có: (x - 0,2)^10 \(\ge\)0 với mọi x

Ta có: (y+ 3,1)^20 \(\ge\)0 với mọi y

\(\Rightarrow\)( x - 0,2 )^10 = 0 và ( y + 3,1 ) ^20 = 0 (vì chúng cộng lại thì bằng 0 và chúng lớn hơn hoặc bằng 0)

\(\Rightarrow\) ( x - 0,2 ) ^ 10 =0

x - 0,2 = 0

x = 0,2

\(\Rightarrow\)( y + 3,1 ) ^ 20 =0

y + 3,1 = 0

y = - 3,1

Vậy x = 0,2 và y = - 3,1

b, (x^2 - 3^2 )= 16

x^ 2 - 9 =16

x^2 = 25

x^2 = (\(\pm\)5)^2

x = \(\pm\)5.

Vậy x = \(\pm\) 5

10 tháng 3 2020

mình chỉ biết làm 2 câu b and c thôi bạn thông cảm nha

Tìm x,y,z

b,\(\left(x+\frac{1}{2}\right)^2=\frac{81}{64}\)

\(\frac{81}{64}=\left(\frac{9}{8}\right)^2hoặc\frac{81}{64}=\left(-\frac{9}{8}\right)^2\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2hoặc\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)

+TH1: \(\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=\frac{9}{8}\)

\(x=\frac{9}{8}-\frac{1}{2}\)

\(x=\frac{9-4}{8}\)

\(x=\frac{5}{8}\)

+TH2:\(\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=-\frac{9}{8}\)

\(x=-\frac{9}{8}-\frac{1}{2}\)

\(x=\frac{-9-4}{8}\)

\(x=\frac{-13}{8}\)

Vậy x= \(\frac{5}{8}\)hoặc x=\(\frac{-13}{8}\)

c, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x^2-2y^2+z^2\)

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(\Leftrightarrow\)\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}=\frac{x^2-2y^2+z^2}{4-18+25}=\frac{44}{11}=4\)

- Do đó :

\(\frac{x^2}{4}=4\Leftrightarrow\frac{x}{2}=4\Rightarrow x=4.2=8\)

\(\frac{2y^2}{18}=4\Leftrightarrow\frac{y^2}{9}=4\Rightarrow\frac{y}{3}=4\Rightarrow y=4.3=12\)

\(\frac{z^2}{25}=4\Leftrightarrow\frac{z}{5}=4\Rightarrow z=4.5=20\)

vậy x = 8 , y= 12 ,z=20

2 tháng 9 2018

a) \(\sqrt{3-x}\)=5

=>(\(\sqrt{3-x}\))2=52

=>3-x=25

=>x=-22

20 tháng 8 2017

mk chưa lên lớp 7

20 tháng 8 2017

Áp dụng tính chất: \(a^{2n}+b^{2m}=0\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)(2n và 2m là các số chẵn)

27 tháng 11 2017

a)

\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)

b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)

ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)

đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)

vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)

27 tháng 11 2017

c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn

\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)

d)

\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)

e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)

ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)

\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)

đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)

vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

17 tháng 9 2017

a/ \(\left|12,1x+12,1.0,1\right|=12,1\)

\(\Leftrightarrow\left|12,1.\left(x+0,1\right)\right|=12,1\)

\(\Leftrightarrow\left[{}\begin{matrix}12,1.\left(x+0,1\right)=12,1\\12,1.\left(x+0,1\right)=-12,1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+0,1=1\\x+0,1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0,9\\x=-1,1\end{matrix}\right.\)

Vậy ................

b/ \(\left|0,2x-3,1\right|+\left|0,2x+3,1\right|=0\)

\(\left\{{}\begin{matrix}\left|0,2x-3,1\right|\ge0\\\left|0,2x+3,1\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|0,2x-3,1\right|=0\\\left|0,2x+3,1\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0,2x-3,1=0\\0,2x+3,1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0,2x=3,1\\0,2x=-3,1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=15,5\\x=-15,5\end{matrix}\right.\)

Vậy ..

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

24 tháng 12 2019

a) \(2^{x-1}=16\)

\(\Rightarrow2^{x-1}=2^4\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=4+1\)

\(\Rightarrow x=5\)

Vậy \(x=5.\)

c) \(\left(x+20\right)^{100}+\left|y+4\right|=0\)

Ta có:

\(\left\{{}\begin{matrix}\left(x+20\right)^{100}\ge0\\\left|y+4\right|\ge0\end{matrix}\right.\forall x,y.\)

\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\) \(\forall x,y\)

\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+20=0\\y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0-20\\y=0-4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-20\\y=-4\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{-20;-4\right\}.\)

Chúc bạn học tốt!

24 tháng 12 2019

b)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)

\(\Leftrightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)

\(\Leftrightarrow\left(x-1\right)^{x+2}.\left[1-\left(x-1\right)^4\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^4=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x-1=1\Rightarrow x=2\end{matrix}\right.\)

Vậy ...

Làm cho hết chớ .-.