Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)
b: \(D=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1-3xy+3xy=1\)
\(x^2+2y^2+2xy-2x+2=0.\)
\(\Leftrightarrow\left(x^2+y^2+1+2xy-2x-2y\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)^2+\left(y+1\right)^2=0\)
Mà \(\left(x+y-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
Suy ra \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x+y=1\\y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-1\end{cases}.}\)
\(2x^2-8x+y^2+2y+9=0\)
\(\Leftrightarrow\left(2x^2-8x+8\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow2\left(x^2-4x+4\right)+\left(y+1\right)^2=0\)
\(\Leftrightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\)
Mà \(2\left(x-2\right)^2\ge0,\left(y+1\right)^2\ge0\)
Suy ra \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)
Bài 1 :
\(e,x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y-1\right)^2\)
Bài 2:
\(b,2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)
\(\Leftrightarrow x=-\dfrac{3}{2}\)
a) \(x^2+4y^2-6x-4y+10=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)
b) \(2x^2+y^2+2xy-10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)
c) \(x^2+2xy+4x-4y-2xy+5=0\)
\(\Leftrightarrow x^2-4x-4y+5=0\)
Xem lại đề câu c).
a) x2 + 4y2 - 6x - 4y + 10 = 0
<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0
<=> ( x - 3 )2 + ( 4y - 1 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)
b) 2x2 + y2 + 2xy - 10x + 25 = 0
<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0
<=> ( x + y )2 + ( x - 5 )2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)
c) Xem lại đề
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
Mình có cách dễ hiểu hơn bạn Nguyễn Văn Đạt nhé!
Nhân 2 vào hai vế : \(PT\Leftrightarrow4x^2+2y^2-8x+4y-4xy+4=0\)(cái này để phân tích nhìn cho nó đẹp thôi:v)
\(\Leftrightarrow\left[\left(2x\right)^2-2.2x.y+y^2\right]-\left(8x-4y\right)+y^2+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2-2.\left(2x-y\right).2+4+y^2=0\)
\(\Leftrightarrow\left(2x-y-2\right)^2+y^2=0\)
Ez chưa:v
\(2x^2+y^2-4x+2y-2xy+2=0\)
\(\Leftrightarrow2\left(x^2-2x-xy\right)+y^2+2y+2=0\)
\(\Leftrightarrow2.\left[x^2-2.x.\left(1+\frac{1}{2}y\right)+\left(1+\frac{1}{2}y\right)^2\right]-\left(1+\frac{1}{2}y\right)^2+y^2+2y+2=0\)
Phá ra áp dụng HĐT sẽ tìm ra được x,y.