Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì : \(\left(2x-5\right)^{2022}\ge0\forall x,\left(3y+4\right)^{2024}\ge0\forall y\\ =>\left(2x-5\right)^{2022}+\left(3y+4\right)^{2024}\ge0\)
Do đó đề bài xảy ra khi và chỉ khi :
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2022}=0\\\left(3y+4\right)^{2024}=0\end{matrix}\right.\\ =>\left(x;y\right)=\left(\dfrac{5}{2};-\dfrac{4}{3}\right)\)
Mình ko biết cách để làm ra đc kết quả này, có thể giải thích cụ thể hơn ko ạ?
Lời giải:
1.
$|4-x|\geq 0$ với mọi $x$
$|2y+1|\geq 0$ với mọi $y$
Do đó để $|4-x|+|2y+1|=0$ thì $|4-x|=|2y+1|=0$
$\Leftrightarrow x=4; y=\frac{-1}{2}$
2.
$|x-3|=|5-2x|$
$\Leftrightarrow x-3=5-2x$ hoặc $x-3=2x-5$
$\Leftrightarrow x=\frac{8}{3}$ hoặc $x=2$
1 ) | 4 - x | + | 2y +1 | = 0
Trường hợp 1 | Trường hợp 2 |
x+1=0 | 2y-4=0 |
x=0-1 | 2y=0+4 |
x=-1 | 2y=2=>y=2 |
a)
Ta có : vì|1/2-1/3+x| lớn hơn hoặc bằng 0
Còn -1/4-|y| bé hơn hoặc bằng 0
=> ko tồn tại x
b)
Ta có: |x-y| lớn hơn hoặc bằng 0 và|y+9/25| lớn hơn hoặc bằng 0 mà:
| x-y|+ |y+9/25| =0 => |x-y| =0 và |y+9/25|=0
Xét |y+9/25| có:
| y+9/25|=0 => y+9/25=0 => y=-9/25
Thay y = -9/25 vào |x-y| =0 => x=-9/25
Vậy x=y=-9/25