K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

\(2x^2+2y^2+2xy-4x+4y+8=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2+\left(y+2\right)^2=0\)

\(\rightarrow x=-y=2\)

22 tháng 12 2016

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-4x+2^2\right)+\left(y^2+4y+2^2\right)=0\)

Vì ...\(\ge\)0 nên để ...=0 thì từng cái =0 r giải bt

29 tháng 7 2019

a,\(2x^2-8x+y^2+2y+9=0\)

\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\) 

Mà \(2\left(x-2\right)^2\ge0\forall x\)\(\left(y+1\right)^2\ge0\forall y\) 

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)

Vậy x=2;y=-1

27 tháng 6 2016

a )x2+2y2-2xy+2x-4y+2=0 
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0 
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>x-y+1=0 va y-1=0 
<=>x=y-1 y=1 
<=>x=1-1=0 y=1

22 tháng 12 2016

\(2x^2+2y^2+2xy-4x+4y+8=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-2\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\begin{cases}x+y=0\\x-2=0\\y+2=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=2\\y=-2\end{cases}\)

22 tháng 12 2016

2x2 + 2y2 + 2xy - 4x + 4y + 8 = 0

<=> x2 + x2 + y2 + y2 +2xy -4x +4y + 4 + 4 = 0

<=> (x2 -4x + 4)+ (y2 +4y + 4) + (x2 + 2xy + y2) =0

<=> (x - 2)2 + (y + 2)2 + (x + y)2 =0

(x - 2)2 >= 0 với mọi x

(y + 2)2 >= 0 với mọi y

(x + y)2 >= 0 với mọi x, y

(x - 2)2 + (y + 2)2 + (x + y)2 = 0

=> (x - 2)2 = 0

(y + 2)2 = 0

(x + y)2 = 0

=> x - 2 = 0

y + 2 = 0

x + y = 0

=> x = 2

y = -2

Vậy x = 2; y = -2

29 tháng 6 2019

D ez nhất :v

\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)

Đẳng thức xảy ra khi x = 1 và y = -2

29 tháng 6 2019

\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)

\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1

5 tháng 8 2015

 

x2+4y2-2x+4y+2=0

<=>x2-2x+1+4y2+4y+1=0

<=>(x-1)2+(2y+1)2=0

<=>x-1=0 và 2y+1=0

<=>x=1 và y=-1/2

 

10 tháng 8 2017

f) x2 + 2y2 - 2xy + 2x + 2 - 4y =0 
<=>x2 + y2 - 2xy+2x-2y+y2-2y+1+1=0 
<=>(x-y)2+2(x-y)+1+(y-1)2=0 
<=>(x-y+1)2+(y-1)2=0 
<=>y=1;x=0
Bạn học thầy Trung phải k nè~~~~
Busted :))))

11 tháng 8 2017

2x X -3 x 5 x X = 52 - 24

30 tháng 7 2018

\(x^2+4y^2-2x+4y+2=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

1 tháng 1 2020

Ta có: x^2+2y^2-2xy+2x+2-4y=0

=> x^2 -2xy+y^2+ 2x-2y+1+y^2-2y+1=0

=> (x-y)^2+ 2(x-y)+1 + (y-1)^2=0

=> (x-y+1)^2+(y-1)^2=0

mà (x-y+1)^2> hoặc=0 với mọi x;y

(y-1)^2> hoặc=0 với mọi x;y

nên x-y+1=0;y-1=0

=> y=1; x=0