K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

6)x- x3- 10x2+2x+4=0

<=>x- x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)

=>(x2-3x-2)(x2+2x-2)=0

Th1:x2-3x-2=0

denta(-3)2-(-4(1.2))=17

\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)

Th2:x2+2x-2=0

denta:22-(-4(1.2))=12

\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)

=>x=-căn bậc hai(3)-1,

x=3/2-căn bậc hai(17)/2,

x=căn bậc hai(3)-1,

x=căn bậc hai(17)/2+3/2

4 tháng 4 2016

theo bài ra ta có 
n = 8a +7=31b +28 
=> (n-7)/8 = a 
b= (n-28)/31 
a - 4b = (-n +679)/248 = (-n +183)/248 + 2 
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên 
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên ) 
=> n = 183 - 248d (với d là số nguyên <=0) 
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3 
=> n = 927

6 tháng 4 2016

\(3.\)  

Ta có:

\(x^2-9x-6\sqrt{x}+34=0\)

\(\Leftrightarrow\)  \(x^2-2.5.x+25+x-2.3.\sqrt{x}+9=0\)

\(\Leftrightarrow\)  \(\left(x-5\right)^2+\left(\sqrt{x}-3\right)^2=0\)  \(\left(3\right)\)

Mà  \(\left(x-5\right)^2\ge0;\)  \(\left(\sqrt{x}-3\right)^2\ge0\)  với  \(x\in R\)

nên  \(\left(3\right)\)  \(\Leftrightarrow\)  \(\left(x-5\right)^2=0;\)  và  \(\left(\sqrt{x}-3\right)^2=0\)

                \(\Leftrightarrow\)   \(x-5=0;\)  và  \(\sqrt{x}-3=0\)

                \(\Leftrightarrow\)   \(x=5;\)  và  \(x=9\)

Thay  \(x=5\)  vào vế trái của phương trình  \(\left(3\right)\), ta được:

\(VT=\left(5-5\right)^2+\left(\sqrt{5}-3\right)^2\ne0=VP\)  (vô lý!)

Tương tự với  \(x=9\), ta cũng có điều vô lý như ở trên.

Vậy, phương trình vô nghiệm, tức tập nghiệm của phương trình  \(S=\phi\)

6 tháng 4 2016

\(1.\)  Đặt biến phụ.

\(2.\)  Biến đổi phương trình tương đương:

\(\left(2\right)\)  \(\Leftrightarrow\) \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)=2.2016z-2016^2\)

         \(\Leftrightarrow\)  \(x^2+1+2y^2+2xy+2yz+2z^2+2\left(x+y\right)-2.2016z+2016^2=0\)

         \(\Leftrightarrow\)  \(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(y^2+2yz+z^2\right)+\left(z^2-2.2016z+2016^2\right)=0\)

         \(\Leftrightarrow\)  \(\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y+z\right)^2+\left(z-2016\right)^2=0\)

         \(\Leftrightarrow\)  \(\left(x+y+1\right)^2+\left(y+z\right)^2+\left(z-2016\right)^2=0\)

Vì  \(\left(x+y+1\right)^2\ge0;\)  \(\left(y+z\right)^2\ge0;\)  \(\left(z-2016\right)^2\ge0\)  với mọi  \(x,y,z\in R\)

Do đó,   \(\left(x+y+1\right)^2=0;\)  \(\left(y+z\right)^2=0;\)  và  \(\left(z-2016\right)^2=0\)  

       \(\Leftrightarrow\)  \(x+y+1=0;\)  \(y+z=0;\)  và  \(z-2016=0\) 

       \(\Leftrightarrow\)  \(x=-y-1;\)  \(y=-z;\) và  \(z=2016\)

       \(\Leftrightarrow\)  \(x=2015;\)  \(y=-2016;\)  và  \(z=2016\)

21 tháng 12 2016

mơn em iu nhìu nhắm nak.

21 tháng 12 2016

shit ~ pate tăng động -_-

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)

3 tháng 4 2017

c) Ta có a + b > 1 > 0 (1)

Bình phương 2 vế: \(\left(a+b\right)^2>1\) \(\Leftrightarrow\) \(a^2+2ab+b^2>1\) (2)

Mặt khác \(\left(a-b\right)^2\ge0\) \(\Rightarrow\) \(a^2-2ab+b^2\ge0\) (3)

Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\) \(\Rightarrow\) \(a^2+b^2>\frac{1}{2}\) (4)

Bình phương 2 vế của (4):  \(a^4+2a^2b^2+b^4>\frac{1}{4}\) (5)

Mặt khác  \(\left(a^2-b^2\right)^2\ge0\) \(\Rightarrow\) \(a^4-2a^2b^2+b^4\ge0\) (6)

Cộng từng vế của (5) và (6):  \(2\left(a^4+b^4\right)>\frac{1}{4}\) \(\Rightarrow\) \(a^4+b^4>\frac{1}{8}\) (đpcm).

3 tháng 4 2017

1/ Áp dụng hẳng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\) là ra bạn nhé

\(A=\left[\left(3^2-1\right)\left(3^2+1\right)\right]\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^4-1\right)\left(3^4+1\right)\right]\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^8-1\right)\left(3^8+1\right)\right]\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^{16}-1\right)\left(3^{16}+1\right)\right]\left(3^{32}+1\right)\)

\(=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=3^{64}-1\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2019

Bài 1:

\(x^2+\frac{1}{x^2}=2\Leftrightarrow (x+\frac{1}{x})^2-2.x.\frac{1}{x}=7\Leftrightarrow (x+\frac{1}{x})^2=9\)

\(\Rightarrow x+\frac{1}{x}=3\) (do \(x>0\rightarrow x+\frac{1}{x}>0\))

\(\Rightarrow (x+\frac{1}{x})^3=27\)

\(\Leftrightarrow x^3+\frac{1}{x^3}+3x.\frac{1}{x}(x+\frac{1}{x})=27\)

\(\Leftrightarrow x^3+\frac{1}{x^3}+3.3=27\Leftrightarrow x^3+\frac{1}{x^3}=18\)

Do đó:

\(x^5+\frac{1}{x^5}=(x^2+\frac{1}{x^2})(x^3+\frac{1}{x^3})-(x+\frac{1}{x})=7.18-3=123\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2019

Bài 2:

Ta có:

\(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow 2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)

\(\Leftrightarrow (x^2+y^2-2xy)+(y^2+z^2-2yz)+(z^2+x^2-2xz)=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z\in\mathbb{R}$

Do đó để $(x-y)^2+(y-z)^2+(z-x)^2=0$ thì $(x-y)^2=(y-z)^2=(z-x)^2=0$

Hay $x=y=z$

Thay vào điều kiện thứ 2:

$\Rightarrow x^{2016}+x^{2016}+x^{2016}=3^{2017}$

$\Leftrightarrow 3.x^{2016}=3^{2017}$

$\Leftrightarrow $x=3$

$\Rightarrow y=z=x=3$

Vậy $x=y=z=3$

27 tháng 12 2015

không có cách khác 

tick nha

27 tháng 12 2015

ko có cách khác , mk cũg lm tương tự như thế