Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+32}{11}=\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\Rightarrow\frac{x+32}{11}+\frac{x+23}{12}-\frac{x+38}{13}-\frac{x+27}{14}=0\)
\(\Rightarrow\left(\frac{x+32}{11}-\frac{x+38}{13}\right)+\left(\frac{x+23}{12}-\frac{x+27}{14}\right)=0\)
\(\Rightarrow\frac{2x-2}{11.13}+\frac{2x-2}{12.14}=0\)
\(\Rightarrow\frac{2x-2}{1}.\left(\frac{1}{11.13}+\frac{1}{12.14}\right)=0\)
vì \(\left(\frac{1}{11.13}+\frac{1}{12.14}\right)\ne0\)
mà \(\frac{2x-2}{1}.\left(\frac{1}{11.13}+\frac{1}{12.14}\right)=0\)
=> \(\frac{2x-2}{1}=0\Rightarrow2x-2=0\Rightarrow2x=2\Rightarrow x=1\)
a) x=-213:(1+2+3+4+...+100)<=>x=-213/100
b) x-x=-1/3-2/4 <=> 0= -5/6 (vô lý )
c) x=-0,8119408369
d) x= 0.0258907758
a) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}\Leftrightarrow-1< x< 2\) (đúng)
Hoặc \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}}\) (vô lý)
=> \(-1< x< 2\)
b) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Bất đẳng thức xảy ra khi 2 thừa số đồng dấu .
\(\left(1\right)\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
\(\left(2\right)\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\) thì thõa mãn
a) Để (x+1)(x-2)<0 khi x+1 và x-2 trái dấu
Mà x+1 > x-2 nên \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}}}\)
=> -1 < x < 2
Vậy -1 < x < 2
b) Đề \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) khi x+2 và \(\frac{2}{3}\) cùng dấu
Với x+2 và \(x+\frac{2}{3}\) cùng dương : \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}}\Rightarrow x>2\)
Với x+2 và \(x+\frac{2}{3}\) cùng âm : \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}}\Rightarrow x< \frac{-2}{3}\)
Vậy x>2 hoặc x < \(\frac{2}{3}\)
\(\frac{x+32}{11}+\frac{x+23}{12}=\frac{x+38}{13}+\frac{x+27}{14}\)
\(\Rightarrow\)\(\frac{x+32}{11}-3+\frac{x+23}{12}-2=\frac{x+38}{13}-3+\frac{x+27}{14}-2\)
\(\Rightarrow\frac{x-1}{11}+\frac{x-1}{12}=\frac{x-1}{13}+\frac{x-1}{14}\)
\(\Rightarrow\frac{x-1}{11}+\frac{x-1}{12}-\frac{x-1}{13}-\frac{x-1}{14}=0\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Rightarrow x-1=0\)(Vì \(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\))
\(\Rightarrow x=1\)
Vậy:x=1
a, A lớn nhất khi 7x la nguyên dương nho nhất
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
\(b,B=\frac{10+4-x}{4-x}\)
\(B=\frac{10}{4-x}+1\)
b lon nhat khi 4-xla nguyen duong nho nhat
\(\Rightarrow4-x=1\)
\(\Rightarrow x=4-1=3\)
\(c,C=\frac{27-2x}{12-x}=\frac{3+24-2x}{12-x}=\frac{3}{12-x}+2\)
c lon nhat khi 12-x la nguyen duong nho nhat
\(\Rightarrow12-x=1\Rightarrow x=11\)
x+32/11 + x+23/12 = x+38/13 + x+27/14
\(\Rightarrow\frac{x+32}{11}-3+\frac{x+23}{12}-2=\frac{x+38}{13}-3+\frac{x+27}{14}-2\)
\(\Rightarrow\frac{x-1}{11}+\frac{x-1}{12}=\frac{x-1}{13}+\frac{x-1}{14}\)
\(\Rightarrow\frac{x-1}{11}+\frac{x-1}{12}-\frac{x-1}{13}-\frac{x-1}{14}=0\)
\(\Rightarrow\left(x-1\right)\left(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Rightarrow x-1=0\).Do \(\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
\(\Rightarrow x=1\)