K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2021

Ta có x2 + 5x - 3√(x2 + 5x + 2) - 2 = 0

<=> x2 + 5x - 2 = 3√(x2 + 5x + 2)

<=> (x2 + 5x - 2)2 = [3√(x2 + 5x + 2)]2

<=> x4 + 25x2 + 4 + 10x3 - 20x - 4x3 = 9(x2 + 5x + 2)

<=> x4 + 6x3 + 25x2 - 20x + 4 = 9x2 + 45x + 18

<=> x4 + 6x3 + 25x2 - 20x + 4 - (9x2 + 45x + 18) = 0

<=> x4 + 6x3 + 25x2 - 9x2 - 20x - 45x + 4 - 18 = 0

<=> x4 + 6x3 + 16x2 - 65x - 14 = 0

Đến đây, ta phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định

Ta có x4 + 6x3 + 16x2 - 65x - 14 sau khia phân tích có dạng (x2 + ax + b)(x2 + cx + d) = x4 + (a+c)x3 + (ac+b+d)x2 + (ad+bc)x + db

=> x4 + 6x3 + 16x2 - 65x - 14 = x4 + (a+c)x3 + (ac+b+d)x2 + (ad+bc)x + db

<=> a+c = 6 ; ac+b+d = 16 ; ad+dc = -65 ; db = -14

Sau đó bạn tìm ra a,b,c,d và giải ra phương trình.

Mình chỉ mới lớp 7 nên chưa tìm ra đươc a,b,c,d.Mong bạn thông cảm cho mình

30 tháng 7 2021

Câu 2,3,4 nx thôi ạ. Câu 1 có bạn giúp r ạ 

30 tháng 7 2021

1)\(\sqrt{4x^2+12x+9}=2-x\)

\(\Leftrightarrow\sqrt{\left(2x+3\right)^2}=2-x\)

\(\Leftrightarrow\left|2x+3\right|=2-x\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2-x\\2x+3=x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)

\(\)

26 tháng 1 2022

\(a,\left(đk:x\ge0\right)\) 

\(x=0\Rightarrow\sqrt{0+3}+0=0\left(vô-nghiệm\right)\)

\(x>0\)

\(\)\(\sqrt{x+3}+\dfrac{4x}{\sqrt{x+3}}=4\sqrt{x}\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}+\dfrac{4\sqrt{x}}{\sqrt{x+3}}=4\)

\(VT\ge2\sqrt{\dfrac{\sqrt{x+3}}{\sqrt{x}}.\dfrac{4\sqrt{x}}{\sqrt{x+3}}}=4\)

\(dấu"="xảy-ra\Leftrightarrow\dfrac{\sqrt{x+3}}{\sqrt{x}}=\dfrac{4\sqrt{x}}{\sqrt{x+3}}\Leftrightarrow x+3=4x\Leftrightarrow x=1\left(tm\right)\)

\(b.2x^4-5x^3+6x^2-5x+2=0\Leftrightarrow\left(x-1\right)^2\left(2x^2-2x+2\right)\Leftrightarrow\left[{}\begin{matrix}x=1\\2x^2-2x+2=0\left(vô-nghiệm\right)\end{matrix}\right.\)

 

26 tháng 1 2022

a) ĐKXĐ : \(x\ge0\)

PT <=> \(x+3-4\sqrt{x}\sqrt{x+3}+4x=0\)

<=> \(\left(\sqrt{x+3}-2\sqrt{x}\right)^2=0\)

<=> \(\sqrt{x+3}=2\sqrt{x}\)

<=> \(x+3=4x\)

<=> x = 1

Vậy x = 1 là nghiệm phương trình

27 tháng 6 2018

a) \(x^2-\sqrt{2}x+\sqrt{5}x-\sqrt{10}=0\)

\(\Leftrightarrow x\left(x-\sqrt{2}\right)+\sqrt{5}\left(x-\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+\sqrt{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{5}\end{matrix}\right.\)

10 tháng 8 2017

\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

b/ Để R<-1   => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)

<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)

<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)

10 tháng 8 2017

Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)   là sao vậy ạ?

Bài 1: 

a: Ta có: \(x^2-2\sqrt{5}x+5=0\)

\(\Leftrightarrow x-\sqrt{5}=0\)

hay \(x=\sqrt{5}\)

b: Ta có: \(\sqrt{x+3}=1\)

\(\Leftrightarrow x+3=1\)

hay x=-2

c: \(\Leftrightarrow x-3=0\)

hay x=3

4 tháng 1 2022

c: ⇔x−3=0⇔x−3=0

hay x=3

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-3\right)}-\sqrt{x-2}=\sqrt{\left(x-3\right)\left(x+1\right)}-\sqrt{x+1}\)

=>\(\sqrt{x-2}\left(\sqrt{x-3}-1\right)-\sqrt{x+1}\left(\sqrt{x-3}-1\right)=0\)

=>\(\left(\sqrt{x-3}-1\right)\left(\sqrt{x-2}-\sqrt{x+1}\right)=0\)

=>x-3=1

=>x=4