K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2020

1) x - 2 = ( x - 2 )2

<=> ( x - 2 ) - ( x - 2 )2 = 0

<=> ( x - 2 )[ 1 - ( x - 2 ) ] = 0

<=> ( x - 2 )( 1 - x + 2 ) = 0

<=> ( x - 2 )( 3 - x ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

2) ( x2 + 1 )( 2x - 1 ) + 2x = 1

<=> ( x2 + 1 )( 2x - 1 ) + ( 2x - 1 ) = 0

<=> ( 2x - 1 )[ ( x2 + 1 ) + 1 ] = 0

<=> ( 2x - 1 )( x2 + 1 + 1 ) = 0

<=> ( 2x - 1 )( x2 + 2 ) = 0

<=> \(\orbr{\begin{cases}2x-1=0\\x^2+2=0\end{cases}}\Leftrightarrow x=\frac{1}{2}\)( do x2 + 2 ≥ 2 > 0 ∀ x )

13 tháng 11 2021

\(x\left(x-2\right)+x-2=0\\ \Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

\(x^2-2x+1=9\\ \Leftrightarrow\left(x-1\right)^2=9\\ \Leftrightarrow\left[{}\begin{matrix}x-1=-3\\x-1=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

\(7x^2=2x\\ \Leftrightarrow7x^2-2x=0\\ \Leftrightarrow x\left(7x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\7x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{7}\end{matrix}\right.\)

\(x^2-6x=8\\ \Leftrightarrow x^2-6x-8=0\\ \left(x^2-6x+9\right)-17=0\\ \Leftrightarrow\left(x-3\right)^2-\sqrt{17^2}=0\\ \Leftrightarrow\left(x-3-\sqrt{17}\right)\left(x-3+\sqrt{17}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{17}=0\\x-3+\sqrt{17}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{17}\\x=3-\sqrt{17}\end{matrix}\right.\)

13 tháng 11 2021

Ơ sao làm mỗi 1 câu vậy bạn ?

2 tháng 8 2017

a) (2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x(2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x

=4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x

=8x.5(2x+1)(2x−1)(2x+1).4x=102x−18x.5(2x+1)(2x−1)(2x+1).4x=102x−1

b) (1x2+x−2−xx+1):(1x+x−2)(1x2+x−2−xx+1):(1x+x−2)

=(1x(x+1)+x−2x+1):1+x2−2xx(1x(x+1)+x−2x+1):1+x2−2xx

=1+x(x−2)x(x+1).xx2−2x+11+x(x−2)x(x+1).xx2−2x+1

=(x2−2x+1)xx(x+1)(x2−2x+1)=1x+1(x2−2x+1)xx(x+1)(x2−2x+1)=1x+1

c) 1x−1−x3−xx2+1.(1x2−2x+1+11−x2)1x−1−x3−xx2+1.(1x2−2x+1+11−x2)

=1x−1−x3−xx2+1.[1(x−1)2−1(x−1)(x+1)]


 

1 tháng 8 2017

a) (2x+12x−1−2x−12x+1):4x10x−5(2x+12x−1−2x−12x+1):4x10x−5                     

  =               0                       -                         0

  = 0

b) (1x2+x−2−xx+1):(1x+x−2);(1x2+x−2−xx+1):(1x+x−2)

 =       (x-xx+1)       :  (2x-2)   :    (x-xx+1)         :  (2x-2)

c) 1x−1−x3−xx2+1.(1x2−2x+1+11−x2)

 =    -2x-1-xx2+1.           (14 - 4x)

 = -x2-1-xx2+14-4x

 = -6x-xx2+13 

16 tháng 12 2018

3 tháng 8 2023

\(x^3-2x^2+x-2=0\\ \Leftrightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ Vậy:x=2\\ ---\\ 2x\left(3x-5\right)=10-6x\\ \Leftrightarrow6x^2-10x-10+6x=0\\ \Leftrightarrow6x^2-4x-10=0\\ \Leftrightarrow6x^2+6x-10x-10=0\\ \Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(6x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}6x-10=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

3 tháng 8 2023

\(4-x=2\left(x-4\right)^2\\ \Leftrightarrow4-x=2\left(x^2-8x+16\right)\\ \Leftrightarrow2x^2-16x+32+x-4=0\\ \Leftrightarrow2x^2-15x+28=0\\ \Leftrightarrow2x^2-8x-7x+28=0\\ \Leftrightarrow2x\left(x-4\right)-7\left(x-4\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\\ ---\\ 4-6x+x\left(3x-2\right)=0\\ \Leftrightarrow4-6x+3x^2-2x=0\\ \Leftrightarrow3x^2-8x+4=0\\ \Leftrightarrow3x^2-6x-2x+4=0\\ \Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

12 tháng 10 2018

a: =>(x-2)(2x+5)=0

=>x=2 hoặc x=-5/2

c: \(\dfrac{2x}{x-1}-\dfrac{x}{x+1}=1\)

=>\(\dfrac{2x^2+2x-x^2+x}{x^2-1}=1\)

=>x^2+3x=x^2-1

=>3x=-1

=>x=-1/3

a: x(x+5)^2=x+5

=>(x+5)(x^2+5x-1)=0

=>x+5=0 hoặc x^2+5x-1=0

=>\(x\in\left\{-5;\dfrac{-5+\sqrt{29}}{2};\dfrac{-5-\sqrt{29}}{2}\right\}\)

b: x(x-2)=(x-2)

=>(x-2)(x-1)=0

=>x=2 hoặc x=1

1: Ta có: \(\left(3-x\right)^2+\left(2x+1\right)^2-\left(2-x\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-2\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

2: Ta có: \(\left(1-2x\right)^2-3\left(x-1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow4x^2-4x+1-3x^2+6x-3+\left(x+1\right)^2-2\left(x-1\right)^2=0\)

\(\Leftrightarrow x^2+2x-2+x^2+2x+1-2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2x^2+4x+1-2x^2+4x-2=0\)

\(\Leftrightarrow x=\dfrac{1}{8}\)

21 tháng 8 2021

a) \(\left(x+3\right)^2-\left(x-2\right)^3=\left(x+5\right)\left(x^2-5x+25\right)-108\)

\(\Leftrightarrow x^2+6x+9-x^2+4x-4=x^3-5x^2+25x+5x^2-25x+125-108\)

\(\Leftrightarrow x^3-10x+12=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+6\right)=0\)

\(\Leftrightarrow x=2\)( do \(x^2+2x+6=\left(x+1\right)^2+4\ge4>0\))