Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
(|x|-2011)^(n+2008)(n+2009)=-(-355)^2009=355 ^2009
n+2008 và n+2009 là 2 số nguyên liên tiếp => (n+2009)(n+2008) là số chẵn => (|x|-2011)^(n+2008)(n+2009) là số chính phương
=> 355 ^2009 là số chính phương mà 355^2009=5^2009 x 71^2009
5,7 là số nguyên tố
=> 2009 là số lẻ (vô lý)
Không có x t/m
(Có gì mắc bạn nhắn mình giải đáp cho)
(|x|-2011)(n+2008)(n+2009)=-(23-32)2009=-(-1)2009=1=1(n+2008)(n+2009)
=>|x|-2011=1
|x|=1+2011
|x|=2012
=>x=2012 hoặc x=-2012
\(\left(\left|x\right|-2011\right)^{\left(2+2008\right)}\cdot\left(2+2009\right)=-\left(2^3-3^2\right)^{2009}\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=-\left(8-9\right)^{2009}\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=-\left(-1\right)^{2009}\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=-\left(-1\right)\)
\(\left(\left|x\right|-2011\right)^{2010}\cdot2011=1\)
\(\left(\left|x\right|-2011\right)^{2010}=\dfrac{1}{2011}\)
???
\(\dfrac{x-1}{2011}+\dfrac{x-2}{2010}-\dfrac{x-3}{2009}=\dfrac{x-4}{2008}\)
<=> \(\left(\dfrac{x-1}{2011}-1\right)+\left(\dfrac{x-2}{2010}-1\right)-\left(\dfrac{x-3}{2009}-1\right)=\left(\dfrac{x-4}{2008}-1\right)\)
<=> \(\dfrac{x-2012}{2011}+\dfrac{x-2012}{2010}-\dfrac{x-2012}{2009}-\dfrac{x-2012}{2008}=0\)
<=> \(\left(x-2012\right)\left(\dfrac{1}{2011}+\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
<=> x - 2012 = 0
<=> x = 2012
trừ 1 vào mỗi tỉ số,ta đc:
\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1-\frac{x-3}{2009}-1=\frac{x-4}{2008}-1\)
\(\Rightarrow\frac{x-1-2011}{2011}+\frac{x-2-2010}{2010}-\frac{x-3-2009}{2009}=\frac{x-4-2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}=\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(mà\frac{1}{2011}<\frac{1}{2010}<\frac{1}{2009}<\frac{1}{2008}\Rightarrow\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=>x-2012=0
=>x=2012
vậy x=2012
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2010}+1\right)-\left(\frac{x-3}{2009}+1\right)=\frac{x-4}{2008}+1\)
\(\Rightarrow\frac{x-1+2011}{2011}+\frac{x-2+2010}{2010}-\frac{x-3+2009}{2009}=\frac{x-4+2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}=\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> x - 2012 = 0
=> x = 2012
Vậy x = 2012
\(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)
\(\Rightarrow\left(\frac{x-1}{2011}+1\right)+\left(\frac{x-2}{2010}+1\right)-\left(\frac{x-3}{2009}+1\right)=\frac{x-4}{2008}+1\)
\(\Rightarrow\frac{x-1+2011}{2011}+\frac{x-2+2010}{2010}-\frac{x-3+2009}{2009}=\frac{x-4+2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}=\frac{x-2012}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)
=> x - 2012 = 0
=> x = 2012
Vậy x = 2012
Kết quả đúng òi nhưng mà dấu suy ra thứ 2 ế \(x-1+2011\) thì bằng \(x+2010\) mà. Cả mấy cái bên cạnh cũng bị tính sai.
\(\frac{x-1}{2011}+\frac{x-2}{2010}=\frac{x-3}{2009}+\frac{x-4}{2008}\)
\(\Rightarrow\frac{x-1}{2011}-1+\frac{x-2}{2010}-1=\frac{x-3}{2009}-1+\frac{x-4}{2008}-1\)
\(\Rightarrow\frac{x-1-2011}{2011}+\frac{x-2-2010}{2010}=\frac{x-3-2009}{2009}+\frac{x-4-2008}{2008}\)
\(\Rightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}=\frac{x-2012}{2009}+\frac{x-2012}{2008}\)
\(\Rightarrow\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(\Rightarrow x-2012=0\)
\(\Rightarrow x=2012\)
Ta có:
\(\frac{x+4}{2008}+1+\frac{x+3}{2009}+1=\frac{x+2}{2010}+1+\frac{x+1}{2011}+1\)
\(\frac{x+2012}{2008}+\frac{x+2012}{2009}=\frac{x+2012}{2010}+\frac{x+2012}{2011}\)
\(\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)
\(x=-2012\)