Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bt bài này là tỉ lệ thức nhưng sau đợt nghỉ tớ vẫn nhớ đc xương xương :v
\(+,\frac{x}{y}=\frac{10}{9}=\frac{x}{10}=\frac{y}{9}\) (1)
\(+,\frac{y}{z}=\frac{3}{4}=\frac{y}{3}=\frac{z}{4}\)( 2 )
đến đây tại s nhể quên mất òi
Từ (1) ; (2) \(\Rightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{10}=\frac{3y}{27};\frac{9y}{27}=\frac{z}{4}\Rightarrow\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-2y+3z}{30-2.27+3.36}=\frac{168}{84}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{30}=2\\\frac{y}{27}=2\\\frac{z}{36}=2\end{cases}\Rightarrow\hept{\begin{cases}x=2.30=60\\y=2.27=54\\z=2.36=72\end{cases}}}\)
T hơi k hủi dòng đầu tiên của bạn ๖ۣۜʚ๖ۣۜQủү☼Dữ๖ۣۜɞ๖ۣۜ ( Cool Team ) cho lắm tại sao lại bằng nhau nhỉ
Bài làm
Ta có \(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{9}=\frac{z}{12}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Đặt \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=10k\\y=9k\\z=12k\end{cases}}\)
Thay x = 10k ; y = 9k ; z = 12k vào x - 2y + 3x = 168 ta có
10k - 2.9k + 3.12k = 168
<=> 10k - 18k + 36k = 168
<=> k ( 10 - 18 + 36 ) = 168
<=> k . 28 = 168
<=> k = 6
\(\Leftrightarrow\hept{\begin{cases}x=10.6=60\\y=9.6=54\\z=12.6=72\end{cases}}\)
Vậy x = 60; y = 54 và z = 72
@@ Học tốt
Ta có: \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\)
\(\Rightarrow\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(=\frac{4.\left(3x-2y\right)}{4.4}=\frac{3.\left(2z-4x\right)}{3.3}=\frac{2.\left(4y-3z\right)}{2.2}\)
\(=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{16+9+4}=\frac{0}{29}=0\)
\(\Rightarrow\begin{cases}12x-8y=0\\6z-12x=0\\8y-6z=0\end{cases}\)\(\Rightarrow\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}\)\(\Rightarrow12x=8y=6z\)
= \(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}=\frac{x+y-z}{\frac{1}{12}+\frac{1}{8}-\frac{1}{6}}=\frac{-10}{\frac{1}{24}}=-10.24=-240\)
\(\Rightarrow\begin{cases}x=-240.\frac{1}{12}=-20\\y=-240.\frac{1}{8}=-30\\z=-240.\frac{1}{6}=-40\end{cases}\)
Vậy x = -20; y = -30; z = -40
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{-4x}{-4.2}=\frac{2y}{3.2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau có:
\(-\frac{4x}{-8}=\frac{2y}{6}=\frac{-4x-2y}{-8-6}=\frac{56}{-14}=-4\)
\(\frac{4x}{8}=-4\Rightarrow4x=-32\Rightarrow x=-8\)
\(\frac{2y}{6}=-4\Rightarrow2y=-24\Rightarrow y=-12\)
a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)
=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)
=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)
Vậy ...
b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)
Vậy ...
Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)
Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .
b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha
Hok tốt
Tìm cac số x;y;z biết rằng:\(\frac{x-y}{10}=\frac{y+x}{5};\frac{x+y}{7}=\frac{y-z}{8}\) và x-2y+z=36
Ta có : \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\)
=> \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3}{2}\)
=> \(\frac{4\left(3x-2y\right)}{4\cdot4}=\frac{3\left(2z-4x\right)}{3\cdot3}=\frac{2\left(4y-3z\right)}{2\cdot2}\)
=> \(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{29}=\frac{0}{29}=0\)
=> \(\hept{\begin{cases}12x-8y=0\\6z-12x=0\\8y-6z=0\end{cases}}\Rightarrow\hept{\begin{cases}12x=8y\\6z=12x\\8y=6z\end{cases}}\Rightarrow12x=8y=6z\)
=> \(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}\)
Đặt \(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}=k\Rightarrow\hept{\begin{cases}x=\frac{1}{12}k\\y=\frac{1}{8}k\\z=\frac{1}{6}k\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{k}{12}\\y=\frac{k}{8}\\z=\frac{k}{6}\end{cases}}\)
=> \(x+y-z=\frac{k}{12}+\frac{k}{8}-\frac{k}{6}\)
=> \(\frac{k}{24}=-10\)
=> \(k=-240\)
Từ đó suy ra : \(x=-\frac{240}{12}=-20\),y = \(-\frac{240}{8}=-30\),z = \(-\frac{240}{6}=-40\)
VÌ \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\)
\(\Rightarrow\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(=\frac{4\left(3x-2y\right)}{4.4}=\frac{3\left(2z-4x\right)}{3.3}=\frac{2\left(4y-3z\right)}{2.2}\)
\(=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)
\(\Rightarrow3x-2y=0\) (1)
\(2z-4x=0\)
\(4y-3z=0\) (2)
TỪ (1) VÀ (2) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y-z}{2+3-4}=\frac{-10}{1}=-10\)
\(\Rightarrow\frac{x}{2}=-10\Rightarrow x=-20\)
\(\frac{y}{3}=-10\Rightarrow y=-30\)
\(\frac{z}{4}=-10\Rightarrow z=-40\)
Đặt \(\frac{x}{-10}=\frac{y}{-6}=k\Rightarrow\hept{\begin{cases}x=-10k\\y=-6k\end{cases}}\)
Khi đó - 4x + 2y = -168
<=> -4.(-10k) + 2.(-6k) = -168
=> 40k - 12k = -168
=> 28k = -168
=> k = -6
=> x = -6.(-10) = 60
y = -6.(-6) = 36
x=60
y=36
~~~ học tốt ~~~~
kết ạn nha