Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\) (1)
ĐKXĐ: x >= -1
Đặt x -2 = a; \(\sqrt{x+1}=b\)
Có \(x^2+4x+12=x^2-4x+4+8x+8=\left(x-2\right)^2+8\left(x+1\right)\)
=> \(\sqrt{x^2+4x+12}=\sqrt{\left(x-2\right)^2+8\left(x+1\right)}=\sqrt{a^2+8b^2}\)
(1) => \(\sqrt{a^2+8b^2}=2a+b\)
<=> \(\hept{\begin{cases}2a+b\ge0\\a^2+8b^2=\left(2a+b\right)^2\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\3a^2+4ab-7b^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\\left(a-b\right)\left(3a+7b\right)=0\end{cases}}\)
TH1: \(\hept{\begin{cases}2a+b\ge0\\a=b\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\\sqrt{x+1}=x-2\end{cases}}\)
<=> \(\hept{\begin{cases}2\left(x-2\right)+\sqrt{x+1}\ge0\\x>2\\x+1=\left(x-2\right)^2\end{cases}}\)<=> \(x=\frac{5+\sqrt{5}}{2}\)
TH2: 3a+7b=0
Trường hợp 2 dài lắm nhưng cuối cùng kết quả vô nghiệm nhé!
P/s: mình không học đội tuyển toán nên mình cũng không biết cách này có được không nữa, mình chỉ làm theo cách cơ bản thôi! Bạn thông cảm nhé!
Tại sao em lại nghĩ nhỏ hơn 0 thì không nhỏ hơn -0.5 được?
\(-3< 0\) nhưng \(-3< -0.5\) vẫn đúng đó thôi, 2 điều này đâu liên quan đâu nhỉ?
Khi nhân chéo 1 BPT thì: nếu mẫu số luôn dương BPT sẽ giữ nguyên chiều, nếu mẫu số luôn âm BPT sẽ đảo chiều.
Với a;b;c;d dương:
Khi em để dạng \(-\dfrac{a}{b}< -\dfrac{c}{d}\) và nhân chéo: \(-ad< -bc\) (nghĩa là nhân b, d lên, 2 đại lượng này dương nên BPT giữ nguyên chiều, đúng)
Còn "kiểu khác" kia của em \(b.\left(-c\right)< \left(-a\right).d\) nó từ bước nào ra được nhỉ?
thì vì cái P đó nó nhỏ hơn -0,5 nên bạn chuyển vế qua thành P+0,5<0 vẫn là 1 cách làm đúng (mình còn hay dùng cách này nữa mà)
còn khúc bạn lập luận vì nhỏ hơn 0 nên vẫn chưa chắc nhỏ hơn -0,5 có lẽ là bạn quên cái khúc mà nhỏ hơn 0 là bạn đã + 0,5 vào rồi nên nó ko phải là P nữa
và bài toán này có nhiều cách giải,bạn có thể làm như cách 1 và 2 cũng được,theo mình thì cách 2 mình ít khi làm vì phải cẩn thận ngồi xem dấu,cả 2 vế cùng dấu mới làm vậy được nên cũng hơi khó khăn,đó là theo mình thôi,còn bạn làm cách nào cũng được
Vd1:
d) Ta có: \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)
\(\Leftrightarrow\sqrt{2}\left(x-1-5\right)=0\)
\(\Leftrightarrow x=6\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
Thay x=3 vào B, ta được:
\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)
1) \(\sqrt{x^2+9x-1}+x\sqrt{11-3x}=2x+3\)
\(\Leftrightarrow\sqrt{x^2+9x-1}+x\sqrt{11-3x}=23+x\)
\(\Rightarrow x=5\)
Vì mình giải bằng máy casio nên không thể giải đầy đủ, nhưng kết quả đó đúng đấy
2) \(\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=x-\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=1-\frac{1}{2}\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=\frac{1}{2}\)
\(\Rightarrow x=5\)
Phương trình có nghiệm là 5.
Ps: Giải bằng máy casio fx-570VN PLUS , sai thì thôi nhé!
a) \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\) (ĐK: \(x\ne1,x\ge0\))
\(A=\left[\dfrac{x+2}{\left(\sqrt{x}\right)^3-1^3}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\left[\dfrac{\left(x+2\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right]\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{\sqrt{x}-1}{x+\sqrt{x}+1}\cdot\dfrac{2}{\sqrt{x}-1}\)
\(A=\dfrac{2}{x+\sqrt{x}+1}\)
b) Ta có:
\(A=\dfrac{2}{x+\sqrt{x}+1}=\dfrac{2}{x+2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
Mà: \(2>0\Rightarrow\dfrac{2}{\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}}\le\dfrac{2}{\dfrac{3}{4}}=\dfrac{8}{3}\)
Dấu "=" xảy ra:
\(\dfrac{2}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}=\dfrac{8}{3}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=2:\dfrac{8}{3}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(A_{max}=\dfrac{8}{3}\) khi \(x=-\dfrac{1}{2}\)
x + 2\(\sqrt{x-1}\) = 4
2\(\sqrt{x-1}\)= 4 - x
\(\sqrt{x-1}\)= \(\frac{4-x}{2}\)
\(\sqrt{x-1}\)= 2 - \(\frac{x}{2}\)
x- 1 = (2 - \(\frac{x}{2}\))2
x - 1 = 4 - 2x + \(\frac{x^2}{4}\)
x = 4 - 2x + \(\frac{x^2}{4}+1\)
x = 5 - 2x + \(\frac{x^2}{4}\)
3x + \(\frac{x^2}{4}\)= 5
\(\frac{12x+x^2}{4}\)=5
12x + x2 = 20
x( 12 + x ) = 20.
Chắc là xét trường hợp; đến đây m chịu, m ngu lắm :(
\(\sqrt{x+2\sqrt{x-1}}=2\Leftrightarrow\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
Đến đây rồi sao nữa ạ?:vv