![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{x^2+4x+12}=2x-4+\sqrt{x+1}\) (1)
ĐKXĐ: x >= -1
Đặt x -2 = a; \(\sqrt{x+1}=b\)
Có \(x^2+4x+12=x^2-4x+4+8x+8=\left(x-2\right)^2+8\left(x+1\right)\)
=> \(\sqrt{x^2+4x+12}=\sqrt{\left(x-2\right)^2+8\left(x+1\right)}=\sqrt{a^2+8b^2}\)
(1) => \(\sqrt{a^2+8b^2}=2a+b\)
<=> \(\hept{\begin{cases}2a+b\ge0\\a^2+8b^2=\left(2a+b\right)^2\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\3a^2+4ab-7b^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\\left(a-b\right)\left(3a+7b\right)=0\end{cases}}\)
TH1: \(\hept{\begin{cases}2a+b\ge0\\a=b\end{cases}}\)
<=> \(\hept{\begin{cases}2a+b\ge0\\\sqrt{x+1}=x-2\end{cases}}\)
<=> \(\hept{\begin{cases}2\left(x-2\right)+\sqrt{x+1}\ge0\\x>2\\x+1=\left(x-2\right)^2\end{cases}}\)<=> \(x=\frac{5+\sqrt{5}}{2}\)
TH2: 3a+7b=0
Trường hợp 2 dài lắm nhưng cuối cùng kết quả vô nghiệm nhé!
P/s: mình không học đội tuyển toán nên mình cũng không biết cách này có được không nữa, mình chỉ làm theo cách cơ bản thôi! Bạn thông cảm nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\orbr{\orbr{\begin{cases}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{cases}}}\) b)\(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\)
c)\(\orbr{\begin{cases}\hept{\begin{cases}x\ge\sqrt{2}\\x\ne\sqrt{3}\end{cases}}\\\hept{\begin{cases}x\le-\sqrt{2}\\x\ne-\sqrt{3}\end{cases}}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\sqrt{2+\sqrt{3}}.\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3+1}\right)^2}\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)^2=\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\left(2^2-\sqrt{3}^2\right)=2\)
\(1.A=x-3\sqrt{x}+5=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) Điều kiện: \(x\ge0\)
\(\Rightarrow MinA=\frac{11}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\left(TM\right)\)
\(2.B=\left(x-2015\right)-\sqrt{x-2015}+2015=\left(\sqrt{x-2015}-\frac{1}{2}\right)^2+2015-\frac{1}{4}\) điều kiện: \(x\ge2015\)
\(B\ge2015-\frac{1}{4}=\frac{8059}{8060}\)
Dấu "=" xảy ra khi \(\sqrt{x-2015}-\frac{1}{2}=0\Leftrightarrow x-2015=\frac{1}{2^2}\Leftrightarrow x=\frac{8061}{8060}\left(TM\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\sqrt{x^2+9x-1}+x\sqrt{11-3x}=2x+3\)
\(\Leftrightarrow\sqrt{x^2+9x-1}+x\sqrt{11-3x}=23+x\)
\(\Rightarrow x=5\)
Vì mình giải bằng máy casio nên không thể giải đầy đủ, nhưng kết quả đó đúng đấy
2) \(\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=x-\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=1-\frac{1}{2}\Leftrightarrow\frac{\sqrt{x+1}}{\sqrt{x+1}-\sqrt{3-x}}=\frac{1}{2}\)
\(\Rightarrow x=5\)
Phương trình có nghiệm là 5.
Ps: Giải bằng máy casio fx-570VN PLUS , sai thì thôi nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.\(DK:\frac{2}{3}\le x< 4\)
b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\)
c.\(DK:x\le-3\)
Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn
x + 2\(\sqrt{x-1}\) = 4
2\(\sqrt{x-1}\)= 4 - x
\(\sqrt{x-1}\)= \(\frac{4-x}{2}\)
\(\sqrt{x-1}\)= 2 - \(\frac{x}{2}\)
x- 1 = (2 - \(\frac{x}{2}\))2
x - 1 = 4 - 2x + \(\frac{x^2}{4}\)
x = 4 - 2x + \(\frac{x^2}{4}+1\)
x = 5 - 2x + \(\frac{x^2}{4}\)
3x + \(\frac{x^2}{4}\)= 5
\(\frac{12x+x^2}{4}\)=5
12x + x2 = 20
x( 12 + x ) = 20.
Chắc là xét trường hợp; đến đây m chịu, m ngu lắm :(
\(\sqrt{x+2\sqrt{x-1}}=2\Leftrightarrow\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
Đến đây rồi sao nữa ạ?:vv