Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x+3\right)\left(x-1\right)}=-\left(x+3+x-1-6\right)\)\(\left(Đk:x\ge1\right)\)
\(\left(\sqrt{x-1}+\sqrt{x+3}\right)^2+\sqrt{x-1}+\sqrt{x-3}-6=0\)
\(\left(\sqrt{x-1}+\sqrt{x+3}+3\right)\left(\sqrt{x-1}+\sqrt{x+3}-2\right)=0\)
Đến đây em xét các trường hợp rồi bình phương lên là được nha
b) \(\sqrt{3x-2}+\sqrt{x-1}=3x-2+x-1-6+2\sqrt{\left(3x-2\right)\left(x-1\right)}\left(Đk:x\ge1\right)\)
\(\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-\left(\sqrt{3x-2}+\sqrt{x-1}\right)-6=0\)
\(\left(\sqrt{3x-2}+\sqrt{x-1}-3\right)\left(\sqrt{3x-2}+\sqrt{x-1}+2\right)=0\)
Đến đây em xét các trường hợp rồi bình phương lên là được nha
a/ ĐKXĐ: $x\geq 1$
Đặt $\sqrt{x-1}=a; \sqrt{x+3}=b$ thì pt trở thành:
$a+b+2ab=6-(a^2+b^2)$
$\Leftrightarrow a^2+b^2+2ab+a+b-6=0$
$\Leftrightarrow (a+b)^2+(a+b)-6=0$
$\Leftrightarrow (a+b-2)(a+b+3)=0$
Hiển nhiên do $a\geq 0; b\geq 0$ nên $a+b+3>0$. Do đó $a+b-2=0$
$\Leftrightarrow a+b=2$
Mà $b^2-a^2=(x+3)-(x-1)=4$
$\Leftrightarrow (b-a)(b+a)=4\Leftrightarrow (b-a).2=4\Leftrightarrow b-a=2$
$\Rightarrow \sqrt{x+3}=b=(a+b+b-a):2=(2+2):2=2$
$\Leftrightarrow x=1$ (tm)
ĐKXĐ:
a.
\(x^2-9\ge0\Rightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
b.
\(\left(3x+2\right)\left(x-1\right)\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{2}{3}\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\) \(\Rightarrow x\ge1\)
a) x khác 0, khác 3
b) x khác 0, khác 1, khác 2/3
c) x khác 0, khác 1, khác 2/3
\(\sqrt{3x+1}+\sqrt{2-x}=x+\sqrt{\left(2-x\right)\left(3x-1\right)}\Leftrightarrow\left(\sqrt{3x+1}-2\right)+\left(\sqrt{2-x}-1\right)+3=x+\left(\sqrt{\left(2-x\right)\left(3x+1\right)}-2\right)+2\)
\(\Leftrightarrow\frac{3x-3}{\sqrt{3x+1}+2}+\frac{-x+1}{\sqrt{2-x}+1}=\left(x-1\right)+\frac{-3x^2+5x-2}{\sqrt{\left(2-x\right)\left(3x+1\right)+2}}\)
\(\Leftrightarrow\left(x-1\right)\left[\frac{3x-2}{\sqrt{\left(2-x\right)\left(3x+1\right)}+2}+\frac{3}{\sqrt{3x+1}+2}-\frac{1}{\sqrt{2-x}+1}-1\right]=0\)\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1.\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)
c: ĐKXĐ: \(x=\dfrac{1}{3}\)
d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)
ĐKXĐ : \(x\ge2\)
Với \(A=\dfrac{x+3}{\sqrt{x}}\)
Khi đó \(A\sqrt{x}+x-1=2\sqrt{3x}+2\sqrt{x-2}\)
<=> \(\dfrac{x+3}{\sqrt{x}}.\sqrt{x}+x-1=2\sqrt{3x}+2\sqrt{x-2}\)
<=> \(x+1=\sqrt{3x}+\sqrt{x-2}\)
Đặt \(\sqrt{3x}=a;\sqrt{x-2}=b\left(a>0;b\ge0\right)\)
Khi đó \(a^2-b^2=2\left(x+1\right)\Leftrightarrow\dfrac{a^2-b^2}{2}=x+1\)
PT trở thành \(\dfrac{a^2-b^2}{2}=a+b\)
<=> \(\left(a+b\right)\left(\dfrac{a-b}{2}-1\right)=0\)
<=> \(\dfrac{a-b}{2}-1=0\left(a+b>0\right)\)
<=> a = b + 2
Khi đó \(\sqrt{3x}=\sqrt{x-2}+2\)
<=> \(\left\{{}\begin{matrix}3x=x+2+4\sqrt{x-2}\\x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=2\sqrt{x-2}\\x\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=4\left(x-2\right)\\x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\x\ge2\end{matrix}\right.\Leftrightarrow x=3\)(tm)
\(\)
1: \(\Leftrightarrow\dfrac{3x-1}{x+2}=4\)
=>4x+8=3x-1
=>x=-9
2: \(\Leftrightarrow\dfrac{5x-7}{2x-1}=4\)
=>8x-4=5x-7
=>3x=-3
=>x=-1
3: ĐKXD: x>=0
\(PT\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
=>\(x+\sqrt{x}-6=x-1\)
=>căn x=-1+6=5
=>x=25
4: ĐKXĐ: x>=0
PT =>\(\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
=>x-2*căn x-3=x-4
=>-2căn x-3=-4
=>2căn x+3=4
=>2căn x=1
=>căn x=1/2
=>x=1/4
a: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
ĐK \(x\ge\frac{2}{3}\)
\(\sqrt{3x-2}=x+1\)
\(\Leftrightarrow3x-2=\left(x+1\right)^2\Leftrightarrow3x-2=x^2+2x+1\)
\(\Leftrightarrow x^2-x+3=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{11}{4}=0\)(vô lí)
Vậy không có giá trị nào của x thỏa mãn