Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì GTTĐ luôn lớn hơn hoặc bằng 0
=> x - 1 + x - 3 + x - 5 + x - 7 = 8
4x - 16 = 8
4x = 8 + 16
4x = 24
=> x = 6
Vậy.........
a: |x+6|+|x-2|=8(1)
TH1: x<-6
Phương trình (1) sẽ trở thành:
-x-6+2-x=8
=>-2x-4=8
=>-2x=12
=>x=-6(loại)
TH2: -6<=x<2
Phương trình (1) sẽ trở thành:
\(x+6+2-x=8\)
=>8=8(luôn đúng)
TH3: x>=2
Phương trình (1) sẽ trở thành:
x+6+x-2=8
=>2x+4=8
=>2x=4
=>x=2(nhận)
Vậy: -6<=x<=2
b: \(\left|x-2\right|+\left|x-5\right|-3=0\)
=>\(\left|x-2\right|+\left|x-5\right|=3\left(2\right)\)
TH1: x<2
Phương trình (2) sẽ trở thành:
\(2-x+5-x=3\)
=>7-2x=3
=>2x=7-3=4
=>x=2(loại)
TH2: 2<=x<5
Phương trình (2) sẽ trở thành:
\(x-2+5-x=3\)
=>3=3(luôn đúng)
TH3: x>=5
Phương trình (2) sẽ trở thành:
x-2+x-5=3
=>2x-7=3
=>2x=10
=>x=5(nhận)
Vậy: 2<=x<=5
Bài 1:
\(A=\left|x-3\right|+\left|x-5\right|+\left|x-7\right|\)
\(\ge x-3+0+7-x=4\)
Dấu = khi \(\begin{cases}x-3\ge0\\x-5=0\\7-x\le0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge3\\x=5\\x\le7\end{cases}\)\(\Leftrightarrow x=5\)
Vậy MinA=4 khi x=5
Bài 2:
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-5\right|\)
\(\ge x-1+x-2+3-x+5-x=5\)
Dấu = khi \(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le5\end{cases}\)\(\Leftrightarrow2\le x\le3\)
1.a) |x - 3/2| + |2,5 - x| = 0
=> |x - 3/2| = 0 và |2,5 - x| = 0
=> x = 3/2 và x = 2,5 (Vô lý vì x không thể xảy ra 2 trường hợp trong cùng 1 biểu thức).
Vậy x rỗng.
a) |x + 1| \(\ge0\)
|x + 3| \(\ge0\)
|x + 5| \(\ge0\)
=> |x + 1| + |x + 3| + |x + 5| \(\ge0\)
=> 7x \(\ge0\)
Mà 7 \(>0\)
=> x \(\ge0\)
=> x + 1 + x + 3 + x + 5 = 7x
=> 3x + 9 = 7x
=> 4x = 9
=> x = \(\frac{9}{4}\)
a) Vì \(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|\ge0\forall x\in R\Rightarrow7x\ge0\forall x\in R\Rightarrow x\ge0\)
\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=x+1+x+3+x+5=3x+9\)
\(\Rightarrow3x+9=7x\)
\(\Rightarrow7x-3x=9\)
\(\Rightarrow4x=9\)
\(\Rightarrow x=\frac{9}{4}\)
a) 2|2x-3| = 1/2
=> |2x-3| = 1/4
=> 2x-3 = 1/4 hoặc 2x-3 = -1/4
=> x = 13/8 hoặc x = 11/8
b) 7,5 - 3|5-2x| = -4,5
=> 3|5-2x| = 12
=> |5-2x| = 4
=> 5-2x = 4 hoặc 5-2x = -4
=> x = 1/2 hoặc x = 4,5
c) |3x-4| + |5y+5| = 0
=> 3x-4 = 0 hoặc 5y+5 = 0
=> x = 4/3 hoặc y = -1
d) |x+3| + |x+1| = 3x
=> x+3+ x+1 = 3x
=> 2x + 4 = 3x
=> x = 4
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x\) (*)
Ta có: \(\left|x+1\right|\ge0\forall x\)
\(\left|x+3\right|\ge0\forall x\)
\(\left|x+5\right|\ge0\forall x\)
\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|\ge0\)
\(\Rightarrow7x\ge0\)
\(\Rightarrow x\ge0\)
Khi đó (*) có dạng:
\(x+1+x+3+x+5=7x\)
\(\Rightarrow3x+9=7x\)
\(\Rightarrow7x-3x=9\)
\(\Rightarrow4x=9\)
\(\Rightarrow x=2,25\)
Vậy `x = 2,25`.